晶体相场方法是一种能在原子尺度和扩散时间尺度模拟材料微观结构演化的新方法,它能够自洽地耦合弹塑性形变和多重晶粒位向,并能用于模拟与此相关的很多物理现象.从晶体相场模型与经典密度泛函理论之间的关系出发,详细论述了晶体相场模型的一些新进展,包括八阶拟合晶体相场模型、双模数晶体相场模型和幅值方程模型等.还描述了晶体相场方法在异质外延、多晶凝固和位错迁移等方面的应用,并展望了其未来的应用前景.
参考文献
[1] | Elder KR;Provatas N;Berry J;Stefanovic P;Grant M .Phase-field crystal modeling and classical density functional theory of freezing[J].Physical review, B. Condensed matter and materials physics,2007(6):4107-1-4107-14-0. |
[2] | 罗伯.D;项金钟;吴兴惠.计算材料学[M].北京:化学工业出版社,2002 |
[3] | Elder KR.;Katakowski M.;Haataja M.;Grant M. .Modeling elasticity in crystal growth - art. no. 245701[J].Physical review letters,2002(24):5701-0. |
[4] | Provatas N;Dantzig J A;Athreya B et al.Using the phase field crystal method in the multi scale modeling of microstructure evolution[J].JOM-Journal of the Minerals Metals and Materials Society,2007,59:83. |
[5] | Huang, Z.-F.;Elder, K.R.;Provatas, N. .Phase-field-crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2010(2 Pt.1):021605-1-021605-22. |
[6] | Jaatinen, A.;Ala-Nissila, T. .Eighth-order phase-field-crystal model for two-dimensional crystallization[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2010(6 Pt.1):061602-1-061602-11. |
[7] | Jaatinen A;Achim C V;Elder K R et al.Thermodynamics of bcc metals in phase field crystal models[J].Physical Review E,2009,80(03):031602. |
[8] | Wu, K.-A.;Adland, A.;Karma, A. .Phase-field-crystal model for fcc ordering[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2010(6 Pt.1):061601-1-061601-16. |
[9] | Elder K R;Huang Z F;Provatas N .Amplitude expansion of the binary phase field crystal model[J].Physical Review E,2010,81(01):011602. |
[10] | Goldenfeld N;Athreya BP;Dantzig JA .Renormalization group approach to multiscale simulation of polycrystalline materials using the phase field crystal model[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2005(2):601-1-601-4-0. |
[11] | Backofen R;Ratz A;Voigt A .Nucleation and growth by a phase field crystal (PFC) model[J].Philosophical Magazine Letters,2007(11):813-820. |
[12] | Elder KR;Grant M .Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2004(5 Pt.1):1605-1-1605-18-0. |
[13] | Berry J;Grant M;Elder KR .Diffusive atomistic dynamics of edge dislocations in two dimensions - art. no. 031609[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2006(3 Pt.1):1609-1-1609-12-0. |
[14] | Stefanovic P;Haataja M;Provatas N .Phase field crystal study of deformation and plasticity in nanocrystalline materials[J].Physical Review E,2009,80(04):046107. |
[15] | Tomoyuki H;Tomohiro T;Yoshihiro T .Development of numerical scheme for phase field crystal deformation simulation[J].Comput Mater Bci,2009,44:1192. |
[16] | Granasy, L.;Tegze, G.;Toth, G.I.;Pusztai, T. .Phase-field crystal modelling of crystal nucleation, heteroepitaxy and patterning[J].Philosophical magazine: structure and properties of condensed matter,2011(1/3):123-149. |
[17] | Huang Z F;Elder K R .Mesoscopic and microscopic modiling of island formation in strained film epitaxy[J].Physical Review Letters,2008,101(15):158710. |
[18] | Greenwood, Michael;Rottler, J?rg;Provatas, Nikolas .Phase-field-crystal methodology for modeling of structural transformations[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2011(3 Pt.1):031601-1-031601-12. |
[19] | Free Energy Functionals for Efficient Phase Field Crystal Modeling of Structural Phase Transformations[J].Physical review letters,2010(4):45702.1-45702.4. |
[20] | 任秀,王锦程,杨玉娟,杨根仓.纯物质晶界结构及运动的晶体相场法模拟[J].物理学报,2010(05):3595-3600. |
[21] | Kuo-An Wu;Peter W. Voorhees .Stress-induced morphological instabilities at the nanoscale examined using the phase field crystal approach[J].Physical review, B. Condensed matter and materials physics,2009(12):125408:1-125408:8. |
[22] | Yu Y M;Backofen R;Voigt A .Morphological instability of heteroepitaxial growth on vicinal substrates:A phase-field crystal study[J].Journal of Crystal Growth,2011,318:18. |
[23] | Tang S;Backofen R;Wang J C et al.Three-dimensional phase-field crystal modeling of fcc and bcc dendritic crystal growth[J].Journal of Crystal Growth,2011,344(01):146. |
[24] | 田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006 |
[25] | Tóth, G.I.;Tegze, G.;Pusztai, T.;Tóth, G.;Gránásy, L. .Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D[J].Journal of Physics. Condensed Matter,2010(36):364101-1-364101-17. |
[26] | Athreya BP;Goldenfeld N;Dantzig JA;Greenwood M;Provatas N .Adaptive mesh computation of polycrystalline pattern formation using a renormalization-group reduction of the phase-field crystal model[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2007(5 Pt.2):056706-1-056706-14-0. |
[27] | Tegze G;Bansel G;Toth GI;Pusztai T;Fan ZY;Granasy L .Advanced operator splitting-based semi-implicit spectral method to solve the binary phase-field crystal equations with variable coefficients[J].Journal of Computational Physics,2009(5):1612-1623. |
[28] | 张琪,王锦程,张亚丛,杨根仓.多晶凝固及后续调幅分解过程的晶体相场法模拟[J].物理学报,2011(08):730-736. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%