{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以聚碳硅烷(PCS)、二乙烯基苯(DVB)和SiC微粉为原料制备碳纤维布增强碳化硅复合材料,考察了分别采用金属模具和石墨模具制备的2D Cf/SiC材料的力学性能.结果表明:采用石墨模具可以减少脱模时材料的层间损伤,制备的材料孔隙分布均匀,力学性能较好,材料的弯曲强度和剪切强度分别达到246.4MPa和24.2MPa,弯曲模量达到64.8GPa,断裂韧性达到10.7MPa·m1/2.","authors":[{"authorName":"简科","id":"d6ee3250-25c1-454c-8e35-01fc22992e82","originalAuthorName":"简科"},{"authorName":"陈朝辉","id":"0c980e7a-cf45-4fdc-879c-81e9de847ddb","originalAuthorName":"陈朝辉"},{"authorName":"马青松","id":"0069258d-100f-4dbb-bdac-cfbd036441c0","originalAuthorName":"马青松"}],"doi":"","fpage":"319","id":"eb537f4f-1888-47b3-9148-4bb510dffad7","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c20a9ff0-97b5-4974-83db-bff6956899db","keyword":"2DCf/SiC材料","originalKeyword":"2DCf/SiC材料"},{"id":"ff6b315d-b4c7-4e8b-9b4a-c130dbb50245","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"c1b8f724-c85d-4314-b4e3-60090127541a","keyword":"模具","originalKeyword":"模具"},{"id":"625875e1-75ba-44a0-b0ad-8cab4769d606","keyword":"先驱体转化法","originalKeyword":"先驱体转化法"}],"language":"zh","publisherId":"xyjsclygc2005z1090","title":"先驱体转化法制备2D Cf/SiC材料的力学性能","volume":"34","year":"2005"},{"abstractinfo":"研究了含硼(B)的聚碳硅烷(PCS)/二乙烯基苯(DVB)先驱体的裂解,并以B为活性填料,SiC微粉为惰性填料,PCS/DVB为先驱体制备了2D Cf/SiC-B材料.考察了B粉含量对材料力学性能和抗氧化性能的影响.结果表明,B的引入可以有效提高先驱体的陶瓷产率,缩短制备周期,当浆料中B含量为15φ%时,6次浸渍-交联-裂解周期后,材料的弯曲强度达到301.3MPa,与不添加活性填料制备的材料9个周期后的性能基本相当.当浆料中B含量为5φ%时,材料的力学性能和抗氧化性能均较好,9个周期后,材料的弯曲强度和断裂韧性分别达到351.3 MPa,13.7 Mpa·m1/2,较不添加活性填料制备的材料力学性能有所提高,在1300℃马弗炉中氧化10 min后,弯曲强度和断裂韧性保留率分别达到了79.4%和80.3%,较未添加活性填料的Cf/SiC材料有明显提高.","authors":[{"authorName":"简科","id":"b46f9617-f06f-44ad-b34e-8c4413970206","originalAuthorName":"简科"},{"authorName":"陈朝辉","id":"d290ae5c-8326-41be-abd6-f06845504055","originalAuthorName":"陈朝辉"},{"authorName":"马青松","id":"b77a7862-0dcd-4cdc-87e4-a44e71df45f6","originalAuthorName":"马青松"},{"authorName":"丑晓明","id":"965f22af-4057-4fea-9633-ca2a885d6d5e","originalAuthorName":"丑晓明"}],"doi":"","fpage":"5","id":"575f0738-e015-46e0-b11a-8c9d5cf5172d","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"01f86055-94d3-4b9c-9577-aace82a80f1d","keyword":"硼","originalKeyword":"硼"},{"id":"ae317f29-2c21-41b5-966a-9bbf857dcae3","keyword":"先驱体转化","originalKeyword":"先驱体转化"},{"id":"a7b74f9b-c398-4f09-954b-3eb191709168","keyword":"2D C/SiC材料","originalKeyword":"2D C/SiC材料"},{"id":"07955da7-975f-4d69-acb6-3458de944a6e","keyword":"氧化","originalKeyword":"氧化"}],"language":"zh","publisherId":"xyjsclygc2006z2002","title":"硼在先驱体转化制备2DCf/SiC材料中的应用","volume":"35","year":"2006"},{"abstractinfo":"研究了含硼(B)的聚碳硅烷(PCS)/二乙烯基苯(DVB)先驱体的裂解,并以B为活性填料,SiC微粉为惰性填料,PCS/DVB为先驱体制备了2D Cf/SiC-B材料.考察了B粉含量对材料力学性能和抗氧化性能的影响.结果表明,B的引入可以有效提高先驱体的陶瓷产率,缩短制备周期,当浆料中B含量为15φ%时,6次浸渍-交联-裂解周期后,材料的弯曲强度达到301.3MPa,与不添加活性填料制备的材料9个周期后的性能基本相当.当浆料中B含量为5φ%时,材料的力学性能和抗氧化性能均较好,9个周期后,材料的弯曲强度和断裂韧性分别达到351.3 MPa,13.7 Mpa·m1/2,较不添加活性填料制备的材料力学性能有所提高,在1300℃马弗炉中氧化10 min后,弯曲强度和断裂韧性保留率分别达到了79.4%和80.3%,较未添加活性填料的Cf/SiC材料有明显提高.","authors":[{"authorName":"简科","id":"25e8f80c-d0c9-4c95-9a4e-b28bf3aa0d42","originalAuthorName":"简科"},{"authorName":"陈朝辉","id":"5a7dd2b2-2308-4985-8640-3055f1b585dc","originalAuthorName":"陈朝辉"},{"authorName":"马青松","id":"6afaeba1-bbd7-4a20-81e7-2e6778b1d1a8","originalAuthorName":"马青松"},{"authorName":"丑晓明","id":"3627f781-a3ad-4c4c-b3a8-704783bf4be5","originalAuthorName":"丑晓明"}],"doi":"","fpage":"5","id":"59e9c532-9df8-427d-b1b6-350d2f327e17","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"03dfadbb-b447-405b-a20d-dce1f077fec5","keyword":"硼","originalKeyword":"硼"},{"id":"ab74c338-b50b-4d47-9999-6bddc19a2cf6","keyword":"先驱体转化","originalKeyword":"先驱体转化"},{"id":"47030841-9e16-49dd-9a67-772a6c01adaa","keyword":"2D C/SiC材料","originalKeyword":"2D C/SiC材料"},{"id":"e2f18362-b464-4d7f-b7eb-09e9c4316848","keyword":"氧化","originalKeyword":"氧化"}],"language":"zh","publisherId":"xyjsclygc2006z1002","title":"硼在先驱体转化制备2DCf/SiC材料中的应用","volume":"35","year":"2006"},{"abstractinfo":"针对固体火箭发动机喉衬的使用工况,在Cf/SiC中引入Cu,通过Cu发汗降低材料表面温度,提高其烧蚀性能.采用先驱体转化法制备了2D Cf/SiC-Cu,考察了裂解温度为1 000、1 100、1 200、1 350℃时,对材料力学、烧蚀性能及微观结构的影响.结果表明,随着裂解温度的提高,试样的弯曲强度和断裂韧度均逐渐下降,分别为:280.0、225.7、193.2、163.0 MPa和18.0、13.6、13.4、13.2 MPa·m1/2.经氧乙炔焰烧蚀30 s后试样的弯曲强度随着裂解温度的提高基本不变,分别为121.2、115.5、124.2和117.5 MPa,其中1 200℃裂解制得的试样具有较低的线烧蚀率(0.025 5mm/s)和质量烧蚀率(0.028 g/s).烧蚀后试样中的Cu大量流失,基体中有少量铜硅化合物(Cu3Si,Cu5Si)出现.","authors":[{"authorName":"王其坤","id":"1ce229ee-972e-43a0-9b7d-e2d543b80f94","originalAuthorName":"王其坤"},{"authorName":"","id":"deaf4a11-b862-4e69-b176-bf6115d12238","originalAuthorName":""},{"authorName":"陈朝辉","id":"15137c0b-4968-41cb-85ca-c246781169ae","originalAuthorName":"陈朝辉"},{"authorName":"","id":"c0fb6bfc-c211-44cf-8650-23d2163e10a5","originalAuthorName":""}],"doi":"10.3969/j.issn.1007-2330.2008.04.007","fpage":"27","id":"bfa0f16a-73d3-4c88-a2ed-a6b67902d9fc","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"38830e57-d050-416e-a77b-bd6b807bfbbd","keyword":"2D Cf/SiC-Cu","originalKeyword":"2D Cf/SiC-Cu"},{"id":"f7f7d400-ef90-4c1e-b831-0226c3795e2a","keyword":"裂解工艺","originalKeyword":"裂解工艺"},{"id":"01cb076b-7f4b-475c-a379-58286381231e","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"f98ac798-e418-4241-a26f-47c85933829a","keyword":"烧蚀性能","originalKeyword":"烧蚀性能"}],"language":"zh","publisherId":"yhclgy200804007","title":"先驱体转化2DCf/SiC-Cu复合材料热处理工艺","volume":"38","year":"2008"},{"abstractinfo":"用波形整形器改装后的SHPB装置测试先驱体法制备的二维Cf/SiC复合材料的动态压缩力学性能,得到了在应变率550~2400 s-1范围内的动态应力应变曲线.结果表明:使用波形整形器改装SHPB后入射波的形状由矩形变为近三角形;Cf/SiC有明显的应变率效应,其抗压强度随着应变率的增大而增大;根据损伤力学理论,建立了其一维动态本构模型,拟合实验数据确定模型中参数,得到应变率及损伤变量相关的Cf/SiC动态本构关系.","authors":[{"authorName":"王继存","id":"5309fcee-7e3e-46df-b324-631fbd5ddbae","originalAuthorName":"王继存"},{"authorName":"王迎春","id":"7b9a1d8f-bb83-4d51-86c9-a08ebbc80312","originalAuthorName":"王迎春"},{"authorName":"马青松","id":"a94621de-ebe7-4592-8f3c-383deb43de89","originalAuthorName":"马青松"},{"authorName":"简科","id":"1c952eab-eb66-4933-a25b-ec8266cb4e04","originalAuthorName":"简科"},{"authorName":"于晓东","id":"b36bdf79-7089-4463-b0af-b443c518d0b3","originalAuthorName":"于晓东"}],"doi":"","fpage":"801","id":"79e2fd6a-01d9-4c01-9265-509ef3bcffd2","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5e379216-1a3a-4ea9-8a42-8c1f5f73d761","keyword":"Cf/SiC复合材料","originalKeyword":"Cf/SiC复合材料"},{"id":"142ddd38-c9c7-4a69-86a2-34bd3902f827","keyword":"SHPB","originalKeyword":"SHPB"},{"id":"f248d57d-170f-46d0-bceb-8e9a99a57943","keyword":"应变率效应","originalKeyword":"应变率效应"},{"id":"1308876c-0019-4a9a-b448-07ce26c61660","keyword":"动态本构关系","originalKeyword":"动态本构关系"}],"language":"zh","publisherId":"xyjsclygc2007z1226","title":"2DCf/SiC复合材料的动态本构关系研究","volume":"36","year":"2007"},{"abstractinfo":"采用等温等压化学气相浸渗法(ICVI)制备了二维碳纤维增韧碳化硅碳二元基复合材料(2D Cf/(SiC-C)).利用扫描电镜(SEM)和背散射电子成像(BSE)研究了其基体的微观结构,并与二维碳纤维增韧碳化硅陶瓷基复合材料(2D Cf/SiC)比较了室温力学性能和断口形貌.结果表明:2D Cf/(SiC-C)复合材料的基体是由SiC与热解碳(PyC)组成的多层结构,PyC基体层分布均匀而连续,且与SiC基体层结合紧密.纤维束内部PyC基体层较厚的2D Cf/(SiC-C)复合材料具有较高的强韧性,其拉伸强度、断裂应变、断裂韧性和断裂功分别比2D Cf/SiC复合材料的提高了3%、142%、22%和58%.SiC与PyC组成的多层基体使2D Cf/(SiC-C)复合材料的纤维在拔出过程中发生了两次集中拔出,且第一次集中拔出的纤维对复合材料的强韧性起主要作用.","authors":[{"authorName":"孟志新","id":"55b31bab-3482-4e03-90fd-d9a168c42c83","originalAuthorName":"孟志新"},{"authorName":"成来飞","id":"68e1f3b7-7b40-433c-9d5a-fe76e182d8d3","originalAuthorName":"成来飞"},{"authorName":"张立同","id":"ab5fde97-093d-4592-89d7-5e652e4d88f6","originalAuthorName":"张立同"},{"authorName":"徐永东","id":"61ede440-8a69-49c9-88a7-523f270c2619","originalAuthorName":"徐永东"},{"authorName":"韩秀峰","id":"722a8e99-e78c-43da-9cad-74ca5498c824","originalAuthorName":"韩秀峰"}],"doi":"10.3724/SP.J.1077.2009.00939","fpage":"939","id":"fea1bffd-dd04-44d3-9a66-4c4f84a7c879","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"6a826c7d-f289-4a94-ae69-9631687b27df","keyword":"二元基复合材料","originalKeyword":"二元基复合材料"},{"id":"6934d615-5a23-4596-8f67-91ed37686942","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"98a6253b-7c10-4591-9189-a1fb03cf7e6b","keyword":"强韧性","originalKeyword":"强韧性"},{"id":"47d96a67-8845-4a11-9de4-fb716b51dca3","keyword":"化学气相浸渗","originalKeyword":"化学气相浸渗"}],"language":"zh","publisherId":"wjclxb200905013","title":"化学气相浸渗2DCf/(SiC-C)复合材料的微观结构与强韧性","volume":"24","year":"2009"},{"abstractinfo":"以二维碳纤维布、硅树脂先驱体、SiC微粉和乙醇溶剂为原料,采用PIP工艺制备了2D Cf/Si-O-C材料,考察了浆料配比对材料力学性能和抗氧化性能的影响.结果表明:硅树脂/乙醇/SiC配比为3∶1.2∶1时所制备材料的力学性能较好,其弯曲强度和断裂韧性分别达到249 MPa和12.7 MPa·m1/2.与力学性能的变化趋势不同,随着浆料中SiC含量的增加,材料的抗氧化性能随之提高,硅树脂/乙醇/SiC配比为3∶1.2∶4时所制备材料在1300℃氧化10 min后,弯曲强度和断裂韧性保留率分别达到了76.3%和83.9%,较未添加SiC微粉的2D Cf/Si-O-C材料有明显提高.","authors":[{"authorName":"刘静宇","id":"b77c8927-3c9d-46f0-8828-f024adec0a99","originalAuthorName":"刘静宇"},{"authorName":"陈朝辉","id":"caa1b203-c579-4df4-8b3e-9b9e28daa8c4","originalAuthorName":"陈朝辉"},{"authorName":"简科","id":"d19eff21-03f3-43d9-b361-00c8a45a2585","originalAuthorName":"简科"},{"authorName":"马青松","id":"3b5e025f-d468-4c00-b381-0bca0c48ea5c","originalAuthorName":"马青松"},{"authorName":"王松","id":"28c469bd-3119-45ce-8366-012b2269cb46","originalAuthorName":"王松"}],"doi":"","fpage":"833","id":"d1a0a7ee-d153-4660-bc60-711f5e2d8536","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"024fa26e-3c16-4a0b-a0d6-8b78e74a3964","keyword":"硅树脂","originalKeyword":"硅树脂"},{"id":"7a4edb9b-6080-492c-a8b9-05271880d144","keyword":"先驱体转化法","originalKeyword":"先驱体转化法"},{"id":"417539ae-9f58-4074-aba0-ef97305ce996","keyword":"2D Cf/Si-O-C材料","originalKeyword":"2D Cf/Si-O-C材料"},{"id":"dddfdeaa-aecd-4d35-af8c-63e8c8295602","keyword":"SiC微粉","originalKeyword":"SiC微粉"},{"id":"599ed761-68c8-4b00-83a9-4895a8f5cf55","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"5f6ae0cd-acc2-4d7b-8c59-963143148760","keyword":"抗氧化性能","originalKeyword":"抗氧化性能"}],"language":"zh","publisherId":"xyjsclygc2007z1235","title":"硅树脂先驱体转化制备2DCf/Si-O-C","volume":"36","year":"2007"},{"abstractinfo":"以先驱体浸渍裂解(PIP)工艺制备了2D Cf/SiC复合材料,研究了低温裂解工艺(裂解温度低于1000℃)对2DCf/SiC复合材料结构和性能的影响,为Cf/SiC复合材料的低温制备探索可行之路.研究表明,采用900℃裂解工艺制备的复合材料其力学性能达到或高于目前同类工艺制备的2D Cf/SiC复合材料力学性能,其弯曲强度达到329.6 MPa,剪切强度32.1 MPa,断裂韧性14.7 MPa·m1/2.并采用差热(TG-DTA)、红外光谱(IR)、X射线衍射(XRD)等对先驱体聚碳硅烷(PCS)及其低温裂解产物的结构和性能进行了研究.","authors":[{"authorName":"周长城","id":"58a03f3d-1d79-493f-a877-892eaab6504b","originalAuthorName":"周长城"},{"authorName":"张长瑞","id":"02f28eb0-d50c-473d-88b0-3ae2a56df15e","originalAuthorName":"张长瑞"},{"authorName":"胡海峰","id":"a50b9a1e-2227-4c41-b03e-47bf2731b92a","originalAuthorName":"胡海峰"},{"authorName":"张玉娣","id":"22c814cc-d492-4a77-a41f-d6af2d095bde","originalAuthorName":"张玉娣"},{"authorName":"王志毅","id":"4902e58c-2f8a-4c2c-8264-46921ec5ee5f","originalAuthorName":"王志毅"}],"doi":"","fpage":"659","id":"0d0c56ea-0f78-4e70-bd8f-f269bdd73b0f","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"9e1af029-fc15-4142-b927-0f5ac6c34f66","keyword":"2D Cf/SiC","originalKeyword":"2D Cf/SiC"},{"id":"609fa97d-3e46-4867-b2ad-61c99b48587d","keyword":"先驱体浸渍裂解","originalKeyword":"先驱体浸渍裂解"},{"id":"4aeaaeb1-4a03-4d9c-8207-a2b964c11274","keyword":"低温裂解","originalKeyword":"低温裂解"},{"id":"7c20babb-50a9-46bb-8273-faa82ed2d9d1","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"xyjsclygc2007z1187","title":"Cf/SiC陶瓷基复合材料的制备工艺研究","volume":"36","year":"2007"},{"abstractinfo":"采用反应热压烧结法制备了Ti3SiC2/SiC复合材料,针对SiC含量对该复合材料致密化程度、力学性能以及应力.应变行为的影响进行了研究.结果表明:(1)随着SiC含最的增加,试样难于致密,试样需要在更高的温度才能达到较高的致密度;(2)随SiC含量的增加,Ti3SiC2/SiC复合材料弯曲强度和断裂韧性提高,但SiC含量达到50%时,由于复合材料含有较多的孔洞,使强度和断裂韧性降低;(3)Ti3SiC2/SiC复合材料在常温下表现为非脆性断裂.","authors":[{"authorName":"尹洪峰","id":"ab80772f-0dd2-4b31-aa78-0c3fcf5958ef","originalAuthorName":"尹洪峰"},{"authorName":"范强","id":"664ef787-e82c-4d4a-a5fc-e3092ded5256","originalAuthorName":"范强"},{"authorName":"任耘","id":"d880f9dd-edb5-40c6-8d86-c90fd2646a16","originalAuthorName":"任耘"},{"authorName":"张军战","id":"711e9fb4-ddc5-4bc8-b9d6-601647e559a9","originalAuthorName":"张军战"}],"doi":"10.3969/j.issn.1005-5053.2008.06.016","fpage":"78","id":"a1cf75b7-7f3d-418e-834d-e710daa6700f","issue":"6","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"2796dd0a-21c8-48a8-97b1-918e90833416","keyword":"Ti3SiC2/SiC复合材料","originalKeyword":"Ti3SiC2/SiC复合材料"},{"id":"faabcbb4-6fa8-4ce6-9a13-dcbe357a0a72","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"611d13cf-4345-4920-8e71-05fc158c1294","keyword":"应力-应变行为","originalKeyword":"应力-应变行为"}],"language":"zh","publisherId":"hkclxb200806016","title":"SiC含量对Ti3SiC2/SiC复合材料性能的影响","volume":"28","year":"2008"},{"abstractinfo":"以Cf/SiC复合材料为基体, 采用浆料浸涂法和脉冲CVD法制备了SiC/(ZrB2-SiC/SiC)4涂层, 借助XRD、扫描电镜及能谱对涂层的结构及组成进行了分析研究, 并初步考查了其高温抗氧化性能. 结果表明, 涂层总厚度约100μm, 主要由ZrB2-SiC涂层与脉冲CVD SiC涂层交替覆盖而成. 在1500℃空气中氧化25h, 未涂层试样失重明显; 脉冲CVD SiC涂层试样氧化失重率为5.1%; 而SiC/(ZrB2-SiC/SiC)4涂层试样出现增重现象, 增重率达2.5%, 表现出优异的抗氧化性能. ","authors":[{"authorName":"吴定星","id":"b99b2086-4087-434d-ae98-e49ae4c23c81","originalAuthorName":"吴定星"},{"authorName":"董绍明","id":"3f7095c6-f0d5-4efc-bc69-3e58e01e0823","originalAuthorName":"董绍明"},{"authorName":"丁玉生","id":"ec358601-56f2-44e2-997c-da9697e7be28","originalAuthorName":"丁玉生"},{"authorName":"张翔宇","id":"52a241e2-d689-422a-a699-d14724b551f2","originalAuthorName":"张翔宇"},{"authorName":"王震","id":"0034c286-9dab-42ae-97f5-b9f50c4e28a4","originalAuthorName":"王震"},{"authorName":"周海军","id":"83ef4b3b-c7d0-4638-9fa1-fead95cac26c","originalAuthorName":"周海军"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2009.00836","fpage":"836","id":"80c3d4e7-0155-4319-a146-4abf773c14fe","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"2b1dacca-b734-444b-92e6-e97691600aac","keyword":"Cf/SiC复合材料","originalKeyword":"Cf/SiC复合材料"},{"id":"b7934308-a711-4622-94e3-ac1d9f05a1b5","keyword":" slurry painting","originalKeyword":" slurry painting"},{"id":"57439169-9b06-44bf-a968-31dd7bb13b7a","keyword":" pulse CVD","originalKeyword":" pulse CVD"},{"id":"b2c64098-a779-4030-b1de-290a378bb532","keyword":" anti-oxidation coating","originalKeyword":" anti-oxidation coating"}],"language":"zh","publisherId":"1000-324X_2009_4_37","title":"Cf/SiC复合材料SiC/(ZrB2-SiC/SiC)4涂层的制备及性能研究","volume":"24","year":"2009"}],"totalpage":11859,"totalrecord":118582}