欢迎登录材料期刊网

材料期刊网

高级检索

制备了羟基磷灰石(HAP)、生物活性玻璃、硅灰石以及羟基磷灰石和硅灰石的复合陶瓷等几种不同的生物活性陶瓷材料,在同一条件下对材料进行模拟体液(SBF)浸泡实验并用傅立叶红外光谱(FTIR)和场发射扫描电镜(FESEM)对试样表面进行了表征.结果显示,几种生物陶瓷材料经模拟体液浸泡后,表面都沉积了碳酸羟基磷灰石(HCA).不同的材料,表面沉积HCA的速度和微观结构有所差异.在硅灰石表面沉积HCA的速度最快,而在HAP表面沉积HCA的速度为最慢.HAP和硅灰石表面沉积的HCA层较为疏松,与此相比生物活性玻璃表面沉积的HCA层较为致密.这几种生物活性陶瓷材料表面沉积的HCA基本上都为光滑的球形颗粒.羟基磷灰石与硅灰石复合后不仅沉积HCA的速度发生很大变化,而且表面生成的HCA的微观结构也发生了改变.我们的结果显示,在模拟体液中材料表面HCA沉积速度和微观结构可以作为评价无机生物材料体外生物活性的一个重要方法,而通过羟基磷灰石和硅灰石复合可以调控材料的生物活性。

Hydroxyapatite (HAP), bioactive glass, wollastonite and composites of hydroxyapatite and wollastonite were
prepared. These different bioactive ceramics were soaked in the simulated body fluid (SBF) under the same condition and characterized by Fourier
Transform Infrared Spectrometry (FTIR) and Field Emission Scanning Electron Microscope (FESEM). The results showed that the surfaces of these bioactive
ceramics were covered with a layer of carbonate hydroxyapatite (HCA) when soaked in SBF. The speed of HCA deposition and the microstructure of the
HCA were different between different materials. HCA formed on the surfaces of the above bioactive ceramics was spherical, and the HCA layer formed on
the surfaces of HAP and wollastonite was slightly loose as compared with that on bioactive glass. When wollastonite was added into HAP, both the speed of
HCA deposition and the microstructure of HCA formed on the surfaces of the composites were clearly affected. The results show that the speed of the HCA
deposition and the microstructure of HCA in SBF can be used to estimate the in vitro bioactivity of inorganic biomaterials, and the bioactivity
of the composites can be regulated by the ratio of the wollastonite/hydroxyapatite.

参考文献

[1] Kokubo T, Ito S, Sakka S. J. Mater. Sci., 1986, 21: 536--540.
[2] Kokubo T, Kushitani H, Ohtsuki C, et al. J. Mater. Sci. Mater. Med., 1992, 3: 79--83.
[3] Marghussian V K, Mesgar A S-M. Ceramics International, 2000, 26: 415--420.
[4] Kokubo T, Kushitani H, Ohtsuki C, et al. J. Mater. Sci. Mater. Med., 1993, 4: 1--4.
[5] Hench L L. J. Am. Ceram. Soc., 1991, 74 (7): 1487--1510.
[6] Vallet-Regi M, Perez-Pariente J, Izquierdo-Barba I, et al. Chem. Mater., 2000, 12: 3770--3775.
[7] Suchanek W, Yoshimura M. J. Mater. Res., 1998, 13 (1): 94.
[8] Nakamyra T, Yamamuro T, Higashi S, et al. J. Biomed. Mater. Res., 1985, 19: 685.
[9] Martinez A, Izquierdo-Barba I, Vallet-Regi M. Chem. Mater., 2000, 12 (10): 3080.
[10] Siriphannon P, Kameshima Y, Yasumori A, et al. J. Eur. Ceram. Soc., 2002, 22: 511--520.
[11] Liu X, Ding C, Wang Z. Biomaterials, 2001, 22: 2007--2012.
[12] Kim C Y, Clark A E, Hench L L. J. Non-crys. Sol., 1989, 113: 195--202.
[13] Izquierdo-Barba I, Salinas J, Vallet-Regi M. J. Biomed. Mater. Res., 1999, 47: 243--250.
[14] Kokubo T, Kushitani H, Sakka S, et al. J. Biomed. Mater. Res., 1990, 24: 721--734.
[15] De Aza P N, Lukinska Z B, Anseau M R, et al. J. Dentistry., 1999, 27: 107--113.
[16] Li P, Ohtsuki C, Kokubo T, et al. J. Mater. Sci. Mater. Med., 1993, 4: 127--131.
[17] Pereira M, Hench L L. J. Sol-gel Sci. Techn. 1996, 7: 59--68.
[18] Zhang H, Li S, Yan Y. Ceramics International. 2001, 27: 451--454.
[19] 黄翔. 生物活性硅灰石及复合材料的研究, 博士学位论文. 上海: 中科?院上海硅酸盐研究所. 2002.
[20] Erich J W, J Donald R. Geochimica et Cosmochimica Acta. 2000, 64 (23): 4007--4016.
[21] Ohtsuki C, Kokubo T, Yamamuro T. J. Non-crys. Sol., 1992, 143: 84--92.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%