欢迎登录材料期刊网

材料期刊网

高级检索

通过优化的加工条件制备了羟基磷灰石/热致液晶高分子(HA/Vectra A950)复合材料仿生人工骨,研究了HA含量对复合材料显微结构和力学性能的影响,分析了HA与Vectra A950共混后的力学性能以及界面结合问题。研究结果表明:当HA与Vectra A950的质量比小于10∶100时,复合材料呈现明显的皮芯结构,皮层液晶微纤高度取向,HA主要分散在芯部,其模量和强度达到或超过天然骨的力学性能;随着HA含量的增加,皮芯结构逐步减弱并消失,而缺陷显著增加。当HA与Vectra A950的质量比增加到20∶100,复合材料的力学性能、尤其是韧性显著降低,这可能是由于HA颗粒与液晶基体之间的结合较差导致的。为保证复合材料仿生人工骨的生物活性,HA的含量应与天然骨接近。因此,需对HA和Vectra A950的界面进行改性以提高其结合性能。

Hydroxyapatite/thermotropic liquid crystal polymer(HA/Vectra A950) composites were processed with optimized parameters.When the HA/Vectra A950 mass ratio is less than 10/100,the composite exhibits a core-shell structure.The HA particles are mainly dispersed in the core part,while the skin layer is composed of highly oriented Vectra A950 microfibrils.The tensile modulus and strength of the composite are comparable or even higher than those of natural bone.With the increase of HA content,the core-shell structure disappears gradually,but the defects increase.With the increase of HA/Vectra A950 mass ratio to 20/100,the composite mechanical properties,fracture strain in particular,significantly decrease.This is attributed to the interface adhesion between HA particles and Vectra A950 matrix is poor.To ensure the bioactivity,HA content of the bone mimicking composite needs to be close to that of natural bone.Therefore,the interface of HA/Vectra A950 needs to be modified to improve their adhesion.

参考文献

[1] Bonfield W, Grynpas M, Tully A, et al. Hydroxyapatite reinforced polyethylene—A mechanically compatible implant material for bone replacement [J]. Biomaterials, 1981, 2(3): 185-186.
[2] 张斌, 朱武, 黄苏萍, 等. 偶联改性纳米HAP/HDPE挤出复合生物材料的力学性能和微观结构[J]. 功能材料, 2007, 38(11): 1912-1915.
[3] 罗庆平, 刘桂香, 杨世源, 等. 磷酸单酯偶联剂改性羟基磷灰石/高密度聚乙烯复合人工骨材料的制备和性能[J]. 复合材料学报, 2006, 23(1): 80-84.
[4] Fang L M, Leng Y, Gao P. Processing and mechanical properties of HA/UHMWPE nanocomposites [J]. Biomaterials, 2006, 27(20): 3701-3707.
[5] Ramakrishna S, Huang Z M, Kumar G V, et al. An introduction to biocomposites [M]/ / Series on Biomaterial and Bioengineering. London: Imperial College Press, 2004: 4-9.
[6] Kettunen J, M?kel? A, Miettinen H, et al. The effect of an intramedullary carbon-fiber-reinforced liquid crystalline polymer implant on bone: An experimental study on rabbits [J]. Journal of Biomedical Materials Research Part A, 1998, 42(3): 407-411.
[7] Kettunen J, M?kel? A, Miettinen H, et al. Mechanical properties and strength retention of carbon fibre-reinforced liquid crystalline polymer (LCP/CF) composite: An experimental study on rabbits [J]. Biomaterials, 1998, 19(14): 1219-1228.
[8] Kettunen J, M?kel? A, Miettinen H, et al. The fixation properties of carbon fiber-reinforced liquid crystalline polymer implant in bone: An experimental study in rabbits [J]. Journal of Biomedical Materials Research Part A, 2001, 56(1): 137-143.
[9] Liu Q, de Wijn J R, van Blitterswijk C A. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix [J]. Journal of Biomedical Materials Research Part A, 1998, 40(3): 490-497.
[10] Liu Q, de Wijn J R, Bakker D, et al. Polyacids as bonding agents in hydroxyapatite polyester-ether (polyactive TM 30/70) composites [J]. Journal of Materials Science: Materials in Medicine, 1998, 9(1): 23-30.
[11] Nayak G C, Rajasekar R, Das C K.Effect of SiC coated MWCNTs on the thermal and mechanical properties of PEI/LCP blend [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(11): 1662-1667.
[12] Wang Y L, Yue C, Tam K, et al. Relationship between processing, microstructure and mechanical properties of injection molded thermotropic LCP [J]. Journal of Applied Polymer Science, 2003, 88(7): 1713-1718.
[13] Capaccioa G, Ward I M. Effect of molecular weight on the morphology and drawing behaviour of melt crystallized linear polyethylene [J]. Polymer, 1975, 16(4): 239-243.
[14] 程兴国, 王进, 袁明君, 等. 超临界流体技术制备一种具仿生结构的微孔复合材料[J]. 科学通报, 2001, 46(1): 17-19.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%