浆料粘度是热诱导相分离法制备支架材料的关键因素,采用不同粘度的纳米羟基磷灰石/聚酰胺66(n-HA/PA66)复合浆料制备了相应的n_HA/PA66多孔支架,并对不同粘度浆料制备支架材料的泡孔结构和力学性能等进行了对比研究。结果表明,浆料粘度对n-HA/PA66复合多孔支架的孔径、孔径分布、孔隙率、开孔率、力学强度等性能有显著的影响。随着浆料粘度的增大,制备支架的孔径、孔隙率、开孔率逐渐减小,而力学强度却逐渐增大。当浆料粘度为330Pa·S时,制备出的n-HA/PA66复合多孔支架综合性能最好,其孔径主要分布在200-500tzm,平均孔径(324±67.1)μm,孔隙率为(75±1.6)%,开孔率为(59±2.5)%,抗压强度为(2.12±0.90)MPa,能够较好地满足骨组织工程支架材料对孔径、孔隙率和力学性能的要求。
The viscosity of slurry plays an important role in fabrication of porous scaffolds by using thermally induced phase separation method. In this paper, nano-hydroxyapatite/polyamide 66 (n-HA/PA66) porous scaffolds were prepared with n-HA/PA66 composite slurry of different viscosity to investigate the influence of slurry viscosity on structure and mechanical property of the fabricated scaffolds. The pore structure and mechanical property of the scaffolds were compared. The results show that the pore size, pore distribution, total porosity and interconnective porosity of n-HA/PA66 scaffolds reduce with the increase of slurry viscosity, while mechanical property of the scaffolds change in an inverse tendency. When the slurry viscosity is 330Pa · s, the aperture is mainly distributed in the 200-500 micron, the n-HA/PA66 porous scaffold exhibite an appropriate average pore size of (324±67.1)μm, porosity of (75±1.6)% and interconnective porosity of (59±2.5)%, as well as compressive strength of (2.12±0.90)MPa, which will be desirable for bone tissue engineering.
参考文献
[1] | Wang Xuejiang;Li Yubao;Wei Jie et al.[J].Biomaterials,2002,23(24):4787-4791. |
[2] | 周松,李玉宝,王妍瑛,左奕,黄棣,张利.注射成型羟基磷灰石/聚酰胺6多孔支架的微观结构和力学性能[J].功能材料,2011(06):1090-1093. |
[3] | 张利,李玉宝,王学江,魏杰,彭雪林.纳米羟基磷灰石/聚酰胺多孔支架材料的制备及性能研究[J].高技术通讯,2004(06):43-46. |
[4] | 李鸿,李玉宝,严永刚,王华楠,王明波,程琳.多孔n-HA/PA-6复合材料的制备及性能[J].复合材料学报,2008(01):64-68. |
[5] | 程琳,李玉宝,左奕,王华楠,王园园,李鸿.纳米羟基磷灰石/聚酰胺多孔支架材料的制备及其结晶行为研究[J].功能材料,2007(01):47-49,52. |
[6] | 王华楠,李玉宝,左奕,程琳,王园园,石浦江.骨组织工程用n-HA/PA66多孔贯通支架的制备及表征[J].高分子材料科学与工程,2007(01):230-233. |
[7] | Wang Hunan;Li Yubao;Zuo Yi et al.[J].Biomaterials,2007,28(22):3338-3348. |
[8] | Mathieu LM;Mueller TL;Bourban PE;Pioletti DP;Muller R;Manson JAE .Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering[J].Biomaterials,2006(6):905-916. |
[9] | Guan JJ;Fujimoto KL;Sacks MS;Wagner WR .Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications[J].Biomaterials,2005(18):3961-3971. |
[10] | Li Yubao;Wijin J D;Groot K D et al.[J].J Mater SciMater Med,1994,5:252-255. |
[11] | Wang Hunan;Zuo Yi;Zou Qin et al.[J].Journal ofPolymer Science Part A:Polymer Chemistry,2009,47(03):658-669. |
[12] | Cerroni L;Filocamo R;Fabbri M et al.[J].Biomolec-ular Engineering,2002,19(2-6):119-124. |
[13] | Wei Jie;Li Yubao .[J].European Polymer Journal,2004,40(13):509-515. |
[14] | Nam YS;Park TG .Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.[J].Biomaterials,1999(19):1783-1790. |
[15] | Almirall A G;Larrecq Delgado J A et al.[J].Biomaterials,2004,25(17):3671-3680. |
[16] | 闰玉华;周文娟;李世普 等.[J].国外医学(生物医学工程分册),2001,24:149. |
[17] | Shi Donglu;Jiang Guowei .[J].J Biomedical Mater Re-searc,1998,43(01):77-81. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%