从变形机理出发建立了双相金属材料的应力应变关系物理模型,研究了晶粒尺寸、相体积分数对材料应力应变的影响.以马氏体-铁素体双相钢为模型钢,定量计算并分析了宏观变形条件下马氏体(硬相)和铁素体(软相)的微观应力应变分配情况.结果表明,模拟的结果与实验很好吻合.体积分数及晶粒尺寸对材料中的各组成相的应力、应变分配有重要影响.随着硬相体积分数的增加,硬、软相的应力分配比逐渐降低;在较低宏观应变下硬相处于弹性变性阶段,较高的硬相体积分数具有较高应变分配比,但是随着宏观应变的增加,硬相开始塑性变形,应变比逐渐降低并最终趋于恒定,较高的硬相体积分数具有较小应变比恒定值.在体积分数一定的情况下,增大硬相的相对晶粒尺寸有助于材料的整体塑性增加,而减小硬相的相对晶粒尺寸有助于材料的整体强度提高.只有控制并调整软硬相的晶粒尺度在适当的范围内,才能更好地发挥出各组成相的潜力.
参考文献
[1] | Y.Tomota,K.Kuroki,T.Mori,I.Tamura,Tensile deformation of two-ductile-phase alloys:Flow curves of α-γFe Cr Ni alloys,Materials Science and Engineering,24(1),85(1976) |
[2] | M.Okayasu,K.Sato,M.Mizuno,D.Y.Hwang,D.H.Shin,Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel,International Journal of Fatigue,30(8),1358(2008) |
[3] | Y.I.Son,Y.K.Lee,K.T.Park,C.S.Lee,D.H.Shin,Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing:Microstructure and tensile properties,Acta Materialia,53(11),3125(2005) |
[4] | L.M.Fu,Z.M.Li,H.R.Wang,W.Wang,A.D.Shan,Liiders-like deformation induced by delta-ferrite-assisted martensitic transformation in a dual-phase high-manganese steel,Scripta Materialia,67(3),297(2012) |
[5] | E.Ahmad,Modified Law of Mixture to Describe the Tensile Deformation Behavior of Thermomechanically Processed Dual-Phase Steel,Journal of Materials Engineering and Performance,Published on line,doi:10.1007/sl 1665-013-0524-0(2013) |
[6] | Q.Furnémont,G.Lacroix,S.Godet,K.T.Corlon,P.J.Jacques,Critical Assessment of the Micromechanical Behaviour of Dual Phase and Trip-Assisted Multiphase Steels,Canadian Metallurgical Quarterly,43(1),35(2004) |
[7] | S.Ankem,H.Margolin,C.A.Greene,B.W.Neuberger,P.G.Oberson,Mechanical properties of alloys consisting of two ductile phases,Progress in Materials Science,51(5),632(2006) |
[8] | D.W.Suh,S.J.Park,T.H.Lee,C.S.Oh,S.J.Kim,Influence of A1 on the Microstructural Evolution and Mechanical Behavior of Low-Carbon,Manganese Transformation-Induced-Plasticity Steel,Metallurgical and Materials Transactions A,41(2),397(2010) |
[9] | J.H.Ryu,D.I.Kim,H.S.Kim,H.K.D.H.Bhadeshia,D.-W.Suh,Strain partitioning and mechanical stability of retained austenite,Scripta Materialia,63(3),297(2010) |
[10] | L.M.Fu,L.K.Fan,Z.G.Li,N.R.Sun,H.R.Wang,W.Wang,A.D.Shan,Yielding behavior associated with stacking faults in a hightemperature annealed ultra-low carbon high manganese steel,Materials Science and Engineering A,582(10),126(2013) |
[11] | R.W.Cahn,Strengthening Methods in Crystals,International Materials Reviews,17(1),147(1972) |
[12] | M.F.Ashby,The deformation of plastically non-homogeneous materials,Philosophical Magazine,21(170),399(1970) |
[13] | Y.Estrin,H.Mecking,A unified phenomenological description of work hardening and creep based on one-parameter models,Acta Metallurgica,32(1),57(1984) |
[14] | F.Zerilli,Dislocation mechanics-based constitutive equations,Metallurgical and Materials Transactions A,35(9),2547(2004) |
[15] | N.A.Fleck,G.M.Muller,M.F.Ashby,J.W.Hutchinson,Strain gradient plasticity:Theory and experiment,Acta Metallurgica et Materialia,42(2),475(1994) |
[16] | H.W.Swift,Plastic instability under plane stress,Journal of the Mechanics and Physics of Solids,1(1),1(1952) |
[17] | I.Tamura,Y.Tomota,M.Ozawa,Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strengths,Inst Met (London) Monogr Rep Ser,1(3),611(1973) |
[18] | A.K.Jena,M.C.Chaturvedi,On the effect of the volume fraction on martensite on the tensile strength of dual-phase steel,Materials Science and Engineering,100(0),1(1988) |
[19] | J.Burns,T.Moore,R.Archer,Quantitative hardenability,Transactions,American Society for Metals,26,1(1938) |
[20] | J.Hodge,M.Orehoski,Relationship between Hardenability and Percentage of Martensite in Some Low Alloy Steels,Trans.AIME,167,627(1946) |
[21] | K.J.Irvine,F.B.Pickering,J.Garston,The Effect of Composition on the Structure and Properties of Martensite,Journal of the Iron and Steel Institute,196,66(1960) |
[22] | E Kelly,J.Nutting,The martensite transformation in carbon steels,Proceedings of the Royal Society of London.Series A.Mathematical and Physical Sciences,259(1296),45(1960) |
[23] | G.Kurdyumov,Phenomena of Quenching and Tempering of steel,Metallurgizdat,Moscow,11 (1960) |
[24] | A.R.Marder,The morphology and strength of iron-carbon martensite,Ph.D Thesis,Lehigh Univeristy(1968) |
[25] | A.Litwinchuk,F.Kayser,H.Baker,A.Henkin,The Rockwell C hardness of quenched high-purity iron-carbon alloys containing 0.09 to 1.91% carbon,Journal of Materials Science,11(7),1200(1976) |
[26] | A.Marder,G.Krauss,J.S.Kirkaldy,Hardenability concepts with Applications to Steel,American Institute of Mechanical Engineers,229(1978) |
[27] | T.Ohmura,K.Tsuzaki,S.Matsuoka,Nanohardness measurement of high-purity Fe-C martensite,Scripta Materialia,45(8),889(2001) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%