采用超音速微粒轰击(SFPB)技术细化处理高速氧燃料喷涂法(HVOF)喷涂的粘结层, 结果表明粘结层主要由γ'-Ni3Al相和γ-Ni相组成. 高温氧化2 h,粘结层表面首先生成亚稳态的γ-Al2O3和稳态的 α-Al2O3,且在Al2O3之间有少量NiO、Co3O4和尖晶石. 亚稳γ-Al2O3和尖晶石倾向于借助β-(Ni,Co)Al相或γ'-Ni3Al相晶体表面形核长大; 稳定的α-Al2O3倾向于借助γ-Ni相晶体表面形核长大. 较长时间的高温氧化后,形成了以α-Al2O3为主相的热生长氧化物层(TGO), 对热障涂层系统的高温腐蚀具有良好的防护作用.
γ'-Ni3Al and γ-Ni phases were detected in a NiCoCrAlY bond coat after HVOF (high velocity oxyfuel spraying)+SFPB (supersonic fine particles bombarding) processes. After 2 h isothermal oxidation, the oxide scale on the surface of bond coat mainly consisted of metastable phase γ-Al2O3 and stable phase α-Al2O3. There existed a small amount of NiO, Co3O4 and spinel phases between Al2O3 grains observed by SEM. While the surface of phase γ-Ni was inclined to form stable phase α-Al2O3 , and the surface of phase β-(Ni,Co)Al and phase γ'-Ni3Al was apt to be the nucleation site of metastable phase γ-Al2O3 and spinel phase. Therefore, the main phase α-Al2O3 formed in the TGO after relatively long time isothermal oxidation, which may be beneficial to thermal barrier coating system in high temperature corrosion resistance.
参考文献
[1] | Alkhimov A P, Papyrin A N, Kosarev V. Gas dynamic sparying method for applying a coating[P]. US patent: 5302414, 1994.[2] Richer P, Zuniga A, Yandouzi M, et al. CoNiCrAlY microstructural changes induced during cold gas dynamic spraying[J]. Surf. Coat. Technol., 2008, 203(3-4): 364.[3] Parthasarathi S, Tittmann B R. Elastic properties of ceramic thin structures[A]. IEEE Ultrasonics Symposium 619[C]. New York: 1996.[4] Sakudo N, Mizutani D, Yoshida M. Surface coating by combining double-pulse plasma with plasma-based ion implantation[A].IEEE Ultrasonics Symposium 5P05[C]. New York: 1996.[5] Jensen H, Sobota J, Sorensen G. A study of film growth and tribological characterization of nano-structured C-N/TiNx multiplayer coatings[J]. Surf. Coat. Technol., 1997, 94~95:174.[6] 韩靖, 盛光敏, 胡国雄. 金属材料表面自纳米化研究现状[J].材料导报, 2007, 21(专辑VIII): 2.[7] 熊天英, 刘志文, 李智超等. 超音速微粒轰击金属表面纳米化新技术[J]. 材料导报, 2003, 17(3):69.[8] Tack U. The influence of cobalt and rhenium on the behavior of MCrAlY coatings[D]. Freiberg: Freiberg University of Technology, 2004.[9] Toscano J, Gil A, Huttel T, et al. Temperature dependence of phase relationships in different types of MCrAlY-coatings [J]. Surf. Coat. Technol., 2007, 202(4~7):603.[10] Naumenko D, Shemet V, Singheiser L, et al. Failure mechanisms of thermalbarrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide [J]. J.Mater. Sci., 2009, 44(7): 1687.[11] Ogawa K , Ito K, Shoji T, et al. Effects of Ce and Si additions to CoNiCrAlY bond coat materials on oxidation behavior and crack propagation of thermal barrier coatings[J]. J. Therm. Spray Technol., 2006, 15(4): 640.[12] Matsumoto M, Hayakawa K, Kitaoka S, et al. The effect of preoxidation atmosphere on oxidation behavior and thermal cycle life of thermal barrier coatings[J]. Mater. Sci. Eng., 2006, A441(1~2): 119.[13] Taniguchi S, Andoh A. Improvement in the oxidation resistance of an Al-deposited Fe-Cr-Al foil by preoxidation[J].Oxid. Met., 2002, 58(5~6): 545.[14] Maier R D, Scheuermann C M, Andrews C W. Degradation of a two-layer thermal barrier coating under thermal cycling[J]. Am.Ceram. Soc. Bull., 1981, 60(5): 555.[15] Teixeira V, Andritschky M, Fischer W, et al. Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings[J]. Surf. Coat. Technol.,1999, 120-121: 103.[16] Khor K A, Gu Y W. Thermal properties of plasma-sprayed functionally graded thermal barrier coatings[J]. Thin Solid Films,2000, 372(1-2): 104.[17] Burtin P, Brunelle J P, Soustelle M. Influence of surface area and additives on the thermal stability of transition alumina catalyst supports. I: Kinetic data[J]. Appl. Catal., 1987, 34:225.[18] Burtin P, Brunelle J P, Pijolat M, et al. Influence of surface area and additives on the thermal stability of transition alumina catalyst supports. II: Kinetic model and interpretation [J].Appl. Catal., 1987, 34: 239.[19] 曹学强. 热障涂层材料[M]. 北京: 科学出版社, 2007.[20] 张丽娟, 林晓娉, 刘春阳等.高速微粒轰击对热障涂层热生长氧化物生长过程的影响[J]. 材料热处理学报,2009, 30(3): 183.[21] 韩玉君, 董允, 王志平等. 热障涂层TGO层的残余应力分析[J].稀有金属材料与工程, 2010, 39(增刊1): 182.[22] 刘春阳, 林晓娉, 王铁宝等.超音速微粒轰击粘结层对热障涂层抗氧化性能的影响[J]. 材料保护, 2009,42(7): 4. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%