欢迎登录材料期刊网

材料期刊网

高级检索

综述了核级碳钢、低合金钢、不锈钢发生动态应变时效(DSA)的反常特征、影响因素及机制,讨论了DSA与高温高压水环境因素的交互作用对核电材料环境致裂的可能影响。指出了当前研究中存在的问题及进一步的研究方向。

The paper summarized the anomalous deformation characteristics, influencing factors and mechanisms of dynamic strain aging (DSA) in nuclear-grade carbon steels, low alloy steels and austenitic stainless steels. The possible effects of the interaction between DSA and high temperature water on environmentally assisted cracking of structural materials used in nuclear power plants have been discussed. The coming possible research topics and directions are also proposed.

参考文献

[1] Lee BH.;Kim IS. .DYNAMIC STRAIN AGING IN THE HIGH-TEMPERATURE LOW-CYCLE FATIGUE OF SA508 CL.3 FORGING STEEL[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,1995(1/2):216-225.
[2] Xu, S;Wu, XQ;Han, EH;Ke, W .Effects of dynamic strain aging on mechanical properties of SA508 class 3 reactor pressure vessel steel[J].Journal of Materials Science,2009(11):2882-2889.
[3] Wu XQ;Katada Y .Role of dynamic strain aging in corrosion fatigue of low-alloy pressure vessel steel in high temperature water[J].Journal of Materials Science,2007(2):633-639.
[4] Hong SG;Lee SB .Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2004(2/3):232-242.
[5] Hong SG;Lee S .Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2005(2/3):307-314.
[6] 徐松,吴欣强,韩恩厚,柯伟.核电站用钢的高温高压水腐蚀疲劳研究进展[J].腐蚀科学与防护技术,2007(05):345-349.
[7] 徐松,吴欣强,韩恩厚,柯伟.316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹断口研究[J].中国腐蚀与防护学报,2010(02):119-123.
[8] 吴欣强,徐松,韩恩厚,柯伟.核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型[J].金属学报,2011(07):790-796.
[9] 李光福,李冠军,方可伟,彭君,杨武,张茂龙,孙志远.异材焊接件A508/52M/316L在高温水环境中的应力腐蚀破裂[J].金属学报,2011(07):797-803.
[10] Atkinson JD.;Yu J. .THE ROLE OF DYNAMIC STRAIN-AGEING IN THE ENVIRONMENT ASSISTED CRACKING OBSERVED IN PRESSURE VESSEL STEELS[J].Fatigue & Fracture of Engineering Materials and Structures,1997(1):1-12.
[11] Chu WY.;Qiao LJ.;Wang YB. .Interaction between blue brittleness and stress corrosion cracking[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2000(2):250-254.
[12] Seifert HP;Ritter S .Stress corrosion cracking of low-alloy reactor pressure vessel steels under boiling water reactor conditions[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2008(1):114-131.
[13] H.P. Seifert;S. Ritter .Corrosion fatigue crack growth behaviour of low-alloy reactor pressure vessel steels under boiling water reactor conditions[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2008(7):1884-1899.
[14] J. Heldt;H.P. Seifert .Stress corrosion cracking of low-alloy, reactor-pressure-vessel steels in oxygenated, high-temperature water[J].Nuclear engineering and design,2001(1):57-89.
[15] V. S. Srinivasan;M. Valsan;R. Sandhya;K. Bhanu Sankara Rao;S. L. Mannan;D. H. Sastry .High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel[J].International Journal of Fatigue,1999(1):11-21.
[16] Seong-Gu Hong;Soon-Bok Lee .The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel: influence of dynamic strain aging[J].International Journal of Fatigue,2004(8):899-910.
[17] Seong-Gu Hong;Keum-Oh Lee;Soon-Bok Lee .Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel[J].International Journal of Fatigue,2005(10/12):1420-1424.
[18] Dae Whan Kim;Woo Gon Kim;Woo-Seog Ryu .Role of dynamic strain aging on low cycle fatigue and crack propagation of type 316L(N) stainless steel[J].International Journal of Fatigue,2003(9/11):1203-1207.
[19] Huang JY.;Hwang JR.;Yeh JJ.;Chen CY.;Kuo RC.;Huang JG. .Dynamic strain aging and grain size reduction effects on the fatigue resistance of SA533B3 steels[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2004(2/3):140-151.
[20] Yeh JJ;Huang JY;Kuo RC .Temperature effects on low-cycle fatigue behavior of SA533B steel in simulated reactor coolant environments[J].Materials Chemistry and Physics,2007(1):125-132.
[21] X.-Q. Wu;Y. Katada .Role of Inclusions and Carbide Bands in Corrosion Fatigue of Pressure Vessel Steel in High-Temperature Water[J].Corrosion: The Journal of Science and Engineering,2004(11):1045-1057.
[22] X.Q. Wu;Y. Katada .Influence of cyclic strain rate on environmentally assisted cracking behavior of pressure vessel steel in high-temperature water[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):58-71.
[23] X. Wu;Y. Katada .Inclusion-involved fatigue cracking in high temperature water[J].Materials and Corrosion,2005(5):305-311.
[24] X. Q. Wu;I. S. Kim .Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 C1.3 pressure vessel steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):309-318.
[25] XINQIANG WU;YASUYUKI KATADA;SANG G. LEE .Hydrogen-Involved Tensile and Cyclic Deformation Behavior of Low-Alloy Pressure Vessel Steel[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2004(5):1477-1486.
[26] Wu X;Katada Y .Cyclic cracking behavior of low-alloy pressure vessel steel in simulated BWR water[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2004(2/3):115-123.
[27] Xinqiang Wu;Enhou Han;Wei Ke;Yasuyuki Katada .Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water[J].Nuclear engineering and design,2007(12/13):1452-1459.
[28] Seifert HP;Ritter S .Strain-induced corrosion cracking behaviour of low-alloy steels under boiling water reactor conditions[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2008(3):312-326.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%