以低温燃烧合成前驱物制备的比表面积为17.4m2/g的AlN粉末和市售BN粉末为原料, 利用无压烧结工艺制备AlN-15BN复合陶瓷, 研究了复合陶瓷的烧结行为以及制备材料的性能, 结果表明: 由于AlN粉末的烧结活性好, 复合材料的烧结致密化温度主要集中在1500~1650℃之间, 在1650℃烧结后, AlN-15BN复合陶瓷的相对密度可达95.6%. 继续升高烧结温度, 材料的致密度变化不大, 热导率继续增加. 在1850℃烧结3h后, 可以制备出相对密度为96.1%, 热导率为132.6W·m-1·K-1, 硬度为HRA64.2的AlN-15BN复合陶瓷. 提出了高比表面积的AlN粉末促进复合陶瓷烧结的机理, 利用XRD, SEM等手段对烧结体进行了表征.
AlN-BN composite ceramics were produced by pressureless sintering process with BN powders bought from market and AlN powders having a specific surface area of 17.4m2/g
synthesized from a combustion precursor, as starting materials. The sintering behavior and characterization of AlN-BN composite ceramics were studied.
The results showed that the sintering temperature for densification was from 1500 to 1650℃ because of the high sintering activity of AlN powders.
AlN-15BN composite ceramics with relative density 95.6% were fabricated by sintering at 1650℃. The thermal conductivity of the composite
ceramics was increased, while the density remained almost constant as sintering temperature increased. AlN-15BN composite ceramics with relative
density 96.1%, thermal conductivity 132.6W·m-1·K-1, and HRA hardness 64.2 were produced by sintering at 1850℃ for 3h.
The mechanism that high specific surface area AlN powders promoting the densification of AlN-BN composite ceramics was suggested, and the
characterizations of the sintered bodies were determined by XRD, SEM and so on.
参考文献
[1] | Mussler B H. Am Ceram Soc Bull, 2000, 79 (6): 45-47. [2] 秦明礼, 曲选辉, 林建凉, 等. 稀有金属材料与工程, 2002, 31 (1): 8-12. [3] 叶乃清, 曾照强, 胡晓清, 等(YE Nai-Qing, et al). 硅酸盐学报 (Journal of the Chinese Ceramic Society), 1998, 26 (2): 265-268. [4] Tajika M, Matsubara H, Rafaniello W. Nanostructured Materials, 1999, 12: 131-134. [5] 杜帅, 李龙土, 刘征, 等(DU Shuai, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 1997, 25 (4): 436-439. [6] Tanemoto K, Kanai T. Key Engineering Materials. 1995, 108-110: 85-96. [7] 秦明礼, 曲选辉, 何新波, 等(QING Ming-Li, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2003, 31 (10): 913-917. [8] Kanai T, Ando A, Tanemoto K. Jpn J Appl Phys, 1992, 31 (5A): 1426-1427. [9] Akihiro S, Hideo I, Masanori U. J Ceram Soc Jpn, 1992, 100 (4): 504-508. [10] Hagio T, Yoshida H. J Mater Sci Lett, 1994, 13: 653-657. [11] Mingli Qin, Xuanhui Qu, Jianliang Lin, et al. Key Engineering Materials, 2002, 224-226: 531-534. [12] Jackson T B, Virkar A V, More K L, et al. J Am Ceram Soc, 1997, 80 (6): 1421-1435. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%