采用直流电弧等离子体法制备了纯Mg和Mg-Nd超细粉末.用XRD、TEM、ICP、PCT、TG/DSC等测试手段研究了粉体的相组成、形貌、颗粒大小、成分和吸放氢性能等.TEM结果表明,Mg-Nd粉的颗粒形状大多为六边形,颗粒大小在50~700 nm之间.成分分析显示Mg-Nd粉末中Nd质量分数仅为0.89%.根据Van't Hoff方程,由PCT曲线吸氢平台压计算出Mg-Nd粉的氢化反应焓为-65.3 kJ/mol,低于纯Mg粉末的-78.6 kJ/mol,证明Nd的加入改善了镁氢化反应的热力学性能;DSC结果显示,Mg-Nd氢化物粉体的放氢峰值温度比纯MgH2低;另外,Mg-Nd氢化物的放氢吸热峰比MgH2的更尖锐,放氢区间更窄,表明Mg-Nd的氢化反应动力学性能得到了改善.
参考文献
[1] | Sun D L;Enoki H .[J].Journal of Alloys and Compounds,1999,285:279. |
[2] | Li L Q;Akiyama T;Yagi J .[J].Journal of Alloys and Compounds,2000,308:98. |
[3] | Wang X L;Tu J P;Wang C H et al.[J].Journal of Power Sources,2006,159:163. |
[4] | Shao H Y;Wang Y T;Xu H R et al.[J].Journal of Alloys and Compounds,2008,465:527. |
[5] | Stampfer J F;Holly C E;Suttle J F .[J].Journal of the American Chemical Society,1960,82:3504. |
[6] | Reiser A;Bogdanovic B;Schlichte K .[J].International Journal of Hydrogen Energy,2000,25(05):425. |
[7] | Vigeholm B;Kjoller J;Larsen B J .[J].Journal of the Less-Common Metals,1983,89:135. |
[8] | Li L Q;Akiyama T;Yagi J .[J].Intermetallics,1999,7:201. |
[9] | Graetz J;Reilly J J .[J].Advances in Engineering Materials,2005,7:597. |
[10] | Bryden K J;Ying J Y .[J].Nano-Structured Materials,1997,9:485. |
[11] | Berube V;Radtke G;Dresselhaus M et al.[J].International Journal of Energy Research,2007,31:637. |
[12] | 段波.影响金属超微粉粒径的几个因素[J].材料工程,1996(02):13. |
[13] | 魏智强;夏天东;王君 et al.[J].物理学报,1993,56:1004. |
[14] | Liu Tong;Zhang Yaohua;Li Xingguo .[J].Seripta Materialia,2003,48:397. |
[15] | Shao Huayu;Wang Yuntao;Xu Hairuo et al.[J].Materials Science and Engineering B,2004,110:221. |
[16] | Klose W;Stuke V .[J].International Journal of Hydrogen Energy,1995,20:30. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%