为了探究无导叶对转涡轮在不同涡轮转速下的流动特性,运用CFD方法对某无导叶对转涡轮模型级的流场进行了三维定常多叶片排的数值模拟.结果表明,涡轮转速的变化对无导叶对转涡轮的喉部位置基本没有影响;随涡轮转速的升高,高压动叶内的激波损失增大,低压动叶内的激波损失减小,源生于低压动叶吸力面上的激波沿吸力面向尾缘移动;对于远离设计点的非设计工况,流动分离损失及低压动叶中的激波损失构成了对转涡轮损失中的主体;涡轮转速的变化对高低压动叶出口气流角及高压动叶出口马赫数的影响作用较大;高低压涡轮出功比、对转涡轮的总功率及等熵效率均随涡轮转速的增大而增大.
参考文献
[1] | W T Wintucky;W L Stewart .Analysis of Two-Stage Counter-Rotating Turbine Efficiencies in Terms of Work and Speed Requirements[NACA RM E57L05][R].,1958. |
[2] | J F Louis .Axial Flow Counter-Rotating Turbines[ASME Paper 85-GT-218][R].,1985. |
[3] | B A Ponomariov .New Generation of the Small Turboshaft and Turboprop Engines in the USSP[ASME Paper 90-GT-195][R].,1990. |
[4] | B A Ponomariov;Y V Sotsenko .Using Contra-Rotating Rotors for Decreasing Sizes and Component Number in Small GTE[ASME Paper 92-GT-414][R].,1992. |
[5] | Y V Sotsenko .Thermogasdynamic Effects of the Engine Turbines with the Countra-Rotating Rotors[ASME Paper 90-GT-63][R].,1990. |
[6] | C W Haldeman;M G Dunn;R S Abhari et al.Experimental and Computational Investigation of the Time-averaged and Time-resolved Pressure Loading on a Vaneless Counter-Rotating Turbine[ASME Paper 2000-GT-0445][R].,2000. |
[7] | 蔡睿贤.对转涡轮基本分析[J].航空学报,1992(01):57. |
[8] | B D Keith;D K Basu;C Stevens .Aerodynamic Test Results of Controlled Pressure Ratio Engine (COPE) Dual Spool Air Turbine Rotating Rig[ASME Paper 2000-GT-0632][R].,2000. |
[9] | M M Weaver;S R Manwaring;R S Abhari et al.Forcing Function Measurements and Predictions of a Transonic Vaneless Counter Rotating Turbine[ASME Paper 2000-GT-0375][R].,2000. |
[10] | H S Wang;J Z Xu;X L Zhao et al.Numerical Investigation on Performance of Vaneless Counter-Rotating Turbine[ISABE Paper 2005-1159][R].,2005. |
[11] | 赵庆军,王会社,赵晓路,徐建中.无导叶对转涡轮三维流场的非定常数值模拟[J].工程热物理学报,2006(01):35-38. |
[12] | 赵庆军,王会社,赵晓路,徐建中.无导叶对转涡轮三维流场数值分析[J].推进技术,2006(02):114-118,123. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%