欢迎登录材料期刊网

材料期刊网

高级检索

利用化学镀的方法制备了不同厚度的钯膜,着重研究了乙醇水蒸气重整反应气氛下钯膜的透氢性能.实验结果表明:573~623 K时,乙醇氢气混合气(Et/H2)气氛对钯膜透氢性能的影响大于乙醇水蒸气混合气(Et/H2O)气氛;623~673 K时,Et/H2O气氛对钯膜透氢性能的影响大于Et/H2气氛.当钯膜暴露在H2/N2/Et和H2/N2/Et/H2O气氛下50 min后,透氢量分别能恢复至初始值的96%和89%.此外,乙醇水蒸气重整反应气氛中,较大的水醇摩尔比[(10~13):1]和较薄的钯膜(2~6 μm)有利于抑制钯膜透氢量的下降.

参考文献

[1] Patrick Moriarty;Damon Honnery .Intermittent renewable energy: The only future source of hydrogen?[J].International journal of hydrogen energy,2007(12):1616-1624.
[2] Meng Ni;Dennis Y.C. Leung;Michael K.H. Leung .A review on reforming bio-ethanol for hydrogen production[J].International journal of hydrogen energy,2007(15):3238-3247.
[3] A. lulianelli;A. Basile .Hydrogen production from ethanol via inorganic membrane reactors technology: a review[J].Catalysis science & technology,2011(3):366-379.
[4] G. Manzolini;S. Tosti;S;Tosti .Hydrogen Production From Ethanol Steam Reforming: Energy Efficiency Analysis Of Traditional And Membrane Processes[J].International journal of hydrogen energy,2008(20):5571-5582.
[5] Yun S;Lim H;Ted Oyama S .Experimental and kinetic studies of the ethanol steam reforming reaction equipped with ultrathin Pd and Pd-Cu membranes for improved conversion and hydrogen yield[J].Journal of Membrane Science,2012,409-410:222-231.
[6] Li H;Goldbach A;Li WZ;Xu HY .CO2 decomposition over Pd membrane surfaces[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2008(39):12182-12184.
[7] F. Gallucci;F. Chiaravalloti;S. Tosti;E. Drioli;A. Basile .The effect of mixture gas on hydrogen permeation through a palladium membrane: Experimental study and theoretical approach[J].International journal of hydrogen energy,2007(12):1837-1845.
[8] C.V. Miguel;A. Mendes;S. Tosti;Luis M. Madeira .Effect of CO and CO_2 on H_2 permeation through finger-like Pd-Ag membranes[J].International journal of hydrogen energy,2012(17):12680-12687.
[9] Hui Li;Andreas Goldbach;Wenzhao Li;Hengyong Xu .PdC formation in ultra-thin Pd membranes during separation of H_2/CO mixtures[J].Journal of Membrane Science,2007(1/2):130-137.
[10] Lischka M;Mosch C;Gross A .CO and hydrogen adsorption on Pd(210)[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2004(3):227-236.
[11] Ziemecki S B;Jones G A;Swartzfager D G et al.Formation of Interstitial Pd-C Phase by Interaction of Ethylene,Acetylene,and Carbon Monoxide with Palladium[J].Journal of the American Chemical Society,1985,107(15):4547-4548.
[12] Amandusson H.;Dannetun H.;Ekedahl L.-G. .Methanol-induced hydrogen permeation through a palladium membrane[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,1999(2):199-205.
[13] 张小亮,王卫平,熊国兴,杨维慎.乙醇水汽重整制氢反应中钯铜合金膜的透氢性能[J].催化学报,2010(08):1049-1053.
[14] 唐春华,邵炜,徐恒泳.超薄金属钯复合膜表面缺陷修饰的研究[J].天然气化工,2009(01):10-16.
[15] H.Amandusson;L.-G.Ekedahl;H.Dannetun .Alcohol dehydrogenation over Pd versus PdAg membranes[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2001(1/2):157-164.
[16] Aristides C.Basagiannis;Paraskevi Panagiotopoulou;Xenophon E.Verykios .Low Temperature Steam Reforming of Ethanol Over Supported Noble Metal Catalysts[J].Topics in Catalysis,2008(1/4):2-12.
[17] 马华锋,姚楠,李小年.乙醇水蒸汽重整制氢负载型镍基催化剂研究进展[J].工业催化,2011(09):1-5.
[18] Chen Y K F L;Sakamoto F;Nakayama Y et al.Hydrogen permeation through palladium-based alloy membranes in mixtures of 10% methane and ethylene in the hydrogen[J].International Journal of Hydrogen Energy,1996,21(07):555-616.
[19] Jung SH.;Morooka S.;Kim SD.;Kusakabe K. .Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane[J].Journal of Membrane Science,2000(1):53-60.
[20] Tosti S;Basile A;Borgognoni F;Capaldo V;Cordiner S;Di Cave S;Gallucci F;Rizzello C;Santucci A;Traversa E .Low-temperature ethanol steam reforming in a Pd-Ag membrane reactor - Part 2. Pt-based and Ni-based catalysts and general comparison[J].Journal of Membrane Science,2008(1/2):258-263.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%