通过研究和分析超超临界火电机组用T23钢持久试样的断口形貌及其在600℃高温蠕变过程中的组织演变,探讨了不同应力水平下T23钢的蠕变断裂机制.研究结果表明,T23钢在高应力条件下的蠕变断裂机制类似于常温下典型的韧性断裂,蠕变空洞主要形核于晶内的夹杂物处;而在低应力条件下的蠕变断裂机制表现为脆性沿晶断裂,蠕变空洞则主要形核于晶界第二相处.
参考文献
[1] | Bendick W;Gabrel J;Hahn B et al.New Low Alloy Heat Resistant Ferritic Steels T/P23 and T/P24 for Power Plant Application[J].International Journal of Pressure Vessels and Piping,2007,84:13. |
[2] | Vaillant J C;Vandenberghe B;Hahn B et al.T/P23,24,911 and 92:New Grades for Advanced Coal-Fired Power Plants-Properties and Experience[J].International Journal of Pressure Vessels and Piping,2008,85:38. |
[3] | Sawada K;Fujitsuka M;Tabuchi M et al.Effect of Oxidation on the Creep Rupture Life of ASME T23 Steel[J].International Journal of Pressure Vessels and Piping,2009,86:693. |
[4] | Abe F .Bainitic and martensitic creep-resistant steels[J].Current opinion in solid state & materials science,2004(3/4):305-311. |
[5] | 杨富;章应霖;任永宁.新型耐热钢焊接[M].北京:中国电力出版社,2009 |
[6] | 钟群鹏;赵子华.断口学[M].北京:高等教育出版社,2006 |
[7] | Dimmler G;Weinert P;Cerjak H .Extrapolation of Shortterm Creep Rupture Data-the Potential Risk of Over-Estimation[J].International Journal of Pressure Vessels and Piping,2008,85:55. |
[8] | Sawada K;Tabuchia M;Kimura K .Creep Strength Degradation of ASME P23/T23 Steels[J].Materials Science and Engineering A,2009,513-514:128. |
[9] | Hartrott P V;Holmstromb S;Caminadac S et al.Life-Time Prediction for Advanced Low Alloy Steel P23[J].Materials Science and Engineering A,2009,510-511:175. |
[10] | Whittaker, M.T.;Wilshire, B. .Creep and creep fracture of 2.25Cr-1.6W steels (Grade 23)[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(18/19):4932-4938. |
[11] | 涂善东,轩福贞,王卫泽.高温蠕变与断裂评价的若干关键问题[J].金属学报,2009(07):781-787. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%