欢迎登录材料期刊网

材料期刊网

高级检索

研究了F掺杂对铁基超导体SmO0.7F0.3FeAs的制备和性能的影响.利用二次固相反应在1120℃保温40h制备出超导临界转变温度(Tc)为56.5 K的SmO0.7F0.3FeAs超导体样品,其临界电流密度Jc为2.4× 105 A/cm2(10 K,0 T).研究发现,SmO1-xFxFeAs样品的Tc受F含量的强烈影响,晶格参数的变化也是诱导SmO1-xFxFeAs超导体的Tc变化的原因之一.在此基础上详细研究了F元素过掺杂对铁基超导体SmO1-xFδFeAs(δ>x)制备参数和性能的影响.F元素过量时,在不降低SmO1-xFδFeAs超导性能的情况下,F元素过掺杂可以一定程度地降低样品制备时的热处理温度和极大地缩短热处理时间.1100℃时保温20h制备的SmO0.7F0.35FeAs和SmO0.7F04FeAs样品的Tc分别为56和55K;其临界电流密度Jc分别为1.9×105和1.7× 105 A/cm2 (10K,0 T).

We report the effect of fluorine doping on the fabrication and superconductivity of the iron-based arsenic oxide SmO1-xFδFeAs (δ≥x) compound.The fluorine over-doping can greatly reduce the heat treatment temperature and the heat treatment time,meanwhile the superconductivity of the SmO1-xFδFeAs samples does not reduce.The critical transition temperature (Tc) is as high as 56.5 K for the SmO0.7F0.3FeAs sample prepared by the two-step solid state reaction method at 1120 ℃ for 40 h、the Jc of the sample is 2.4× 105 A/cm2 (10 K,0 T).Tc of the fluorine over-doped SmO0.07F0.35FeAs and SmO0.7F0.4FeAs samples prepared by the two-step solid state reaction method at 1100 ℃ for 20 h are 56 and 55 K,respectively.Jc of the both samples are 1.9×105 and1.7× 105 A/cm2 (10 K,0 T),respectively.

参考文献

[1] Paul M. Grant .Prospecting for an iron age[J].Nature,2008(7198):1000-1001.
[2] Hisashi Kotegawa;Satoru Masaki;Yoshiki Awai et al.[J].Journal of the Physical Society of Japan,2008,77:110703.
[3] Cenke Xu;Subir Sachdev .[J].Nature Physics,2008,4:898.
[4] Kamihara Y;Watanabe T;Hirano M;Hosono H .Iron-based layered superconductor La[O1-xFx]FeAs (x=0.05-0.12) with T-c=26 K[J].Journal of the American Chemical Society,2008(11):3296-3297.
[5] Wu Dan;Li Zheng;Wang Nanlin et al.[J].Physics Mechanics and Astronomy,2008,51(06):712.
[6] Chen X H;Wu T;Liu R H et al.[J].Nature,2008,453:761.
[7] Ren Z A;Yang J;Zhao Z X et al.[J].Materials Research Innovatirons,2008,12(03):105.
[8] Yang Jie;Li Zhengcai;Zhao Zhongxian et al.[J].Superconductor Science and Technology,2008,21:82001.
[9] Jeevan H S;Hossain Z;Deepa Kasinathan et al.[J].Physical Review B,2008,78:52502.
[10] Wang, XC;Liu, QQ;Lv, YX;Gao, WB;Yang, LX;Yu, RC;Li, FY;Jin, CQ .The superconductivity at 18 K in LiFeAs system[J].Solid State Communications,2008(11/12):538-540.
[11] Chu, C. W.;Chen, F.;Gooch, M.;Guloy, A. M.;Lorenz, B.;Lv, B.;Sasmal, K.;Tang, Z. J.;Tapp, J. H.;Xue, Y. Y. .The synthesis and characterization of LiFeAs and NaFeAs[J].Physica, C. Superconductivity and its applications,2009(9/12):326-331.
[12] Yoshikazu Mizuguchi;Fumiaki Tomioka et al.[J].Applied Physics Letters,2008,93:122505.
[13] Zhang Lijun;Singh D J et al.[J].Physical Review B:Condensed Matter,2008,78:104511.
[14] Zhu Xiyu;Wen Haihu et al.[J].Physical Review B:Condensed Matter,2009,79:220512.
[15] Lee K W;Pickett W E et al.[J].EPL,2010,89:57008.
[16] Nagamatsu J;Nakagawa N;Muranaka T;Zenitani Y;Akimitsu J .Superconductivity at 39 K in magnesium diboride[J].Nature,2001(6824):63-64.
[17] Flükiger R;Suo H L;Musolino N et al.[J].Physica C,2003,385:286.
[18] Berlincourt T G;Hake R R .[J].Phys gev Lett,1962,9:293.
[19] Suo Hongli;Concetta Beneduce et al.[J].Applied Physics Letters,2001,79(19):3116.
[20] Zheng Wei;Keqing Ruan et al.[J].Journal of Superconductivity and Novel Magnetism,2008,21:210.
[21] Chen Y L;Zhao Y et al.[J].Superconductor Science and Technology,2008,21:112011.
[22] Gao Zhaoshun;Wen Haihu et al.[J].Superconductor Science and Technology,2008,21:112001.
[23] Hunte F;Jaroszynski J;Gurevich A;Larbalestier DC;Jin R;Sefat AS;McGuire MA;Sales BC;Christen DK;Mandrus D .Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields.[J].Nature,2008(7197):903-905.
[24] Teruo Matsushita;Ni Baorong et al.[J].Journal of Applied Physics,1988,27:929.
[25] Parrell J A;Larbalestier D C et al.[J].Superconductor Science and Technology,1996,9:393.
[26] Yang Jie;Ren Zhian et al.[J].Superconductor Science and Technology,2009,22:25004.
[27] Liu R H;Chen X H et al.[J].Physical Review Letters,2008,101:87001.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%