用脉冲电沉积技术制备Ni镀层,研究了脉冲周期和糖精添加剂对其微观结构的影响.结果表明,采用单向脉冲电沉积时,增大脉冲周期可制备出生长取向更均匀、表面更平整且晶粒尺寸更小的纳米晶Ni镀层;在镀液中加入糖精可降低镀层中的张应力,从而避免镀层开裂,且可明显细化镀层的晶粒尺寸;采用正反脉冲电沉积时,随着反向脉冲周期的增大,镀层的晶粒先沿〈200〉方向择优生长,而后转变为沿〈111〉、〈200〉和〈220〉三个方向较均匀生长,最后又重新沿〈200〉方向掸优生长.
参考文献
[1] | G.Palumbo,D.M.Doyle,A.M.E1-Sherik,U.Erb,K.T.Aust,Intercrystalline hydrogen transport in nanocrystalline nickel,Scr.Metll.Mater.,25,679(1991) |
[2] | U.Erb,A.M.E1-Sherik,Nanocrystalline materials and process of producing the same,US Patent 5,352,266(1994) |
[3] | A.M.E1-Sherik,U.Erb,Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition,J.Mater.Sci.,30,5743(1995) |
[4] | U.Erb,Electrodeposited nanocrystals:Synthesis,properties and industrial applications,Nanostruct.Mater.,6,533(1995) |
[5] | H.Natter,M.Schmelzer,R.Hempelmann,Nanocrystalline nickel and nickel-copper-alloys:Synthesis,characterization and thermal stability,J.Mater.Res.,13,1186(1998) |
[6] | A.Robertson,U.Erb,G.Palumbo,Practical applications for electrodeposited nanocrystalline materials,Nanostr.Mater.,12,1035(1999) |
[7] | I.Baskaran,T.S.N.Sankara Narayanan,A.Stephen.,Pulsed electrodeposition of nanocrystalline Cu-Ni alloy films and evaluation of their characteristic properties,Mater.Let.,60,1990(2006) |
[8] | A.Marlot,P.Kern,D.Landolt.,Pulse plating of Ni-Mo alloys from Ni-rich electrolytes,Electro.Acta,48,29(2002) |
[9] | R.T.C.Choo,J.M.Toguri,A.M.E1-Sherik,Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating,J.Appl.Electrochem.,25,384(1995) |
[10] | Y.Zhang,X.Peng,F.Wang,Development and oxidation at800 oC of a novel electrodeposited Ni-Cr nanocomposite film,Mater.Let.,58,1134(2004) |
[11] | X.Peng,T.Li,W.Wu,Effect of L32O3 particles on microstructure and cracking-resistance of NiO scale on electrodeposited nickel films,Mater.Sci.Eng.,A298,100(2001) |
[12] | Y.Zhou,X.Peng,F.Wang,Oxidation of a novel electrodeposited Ni-Al nanocomposite film at 1050 ℃,Scr.Mater.,50,1429(2004) |
[13] | S.Kaja,H.W Pickering,W.R.Bitler,Effect of pH on the microstructure of nickel electrodeposits-A TEM Study,Plat.Surf.Fin.,73,58(1986) |
[14] | S.Shriram,S.Mohan,N.G.Renganathan,R.Venkatachalam,Electrodeposition of nanocrystalline nickel-a brief review,Trans.IMF.,78,194(2000) |
[15] | R.Weil,H.C.Cook,Electron-microscopic observations of the structure of electroplated nickel,J.Electrochem.Soc.,109,295(1962) |
[16] | A.G.McCormark,M.J.Oomeroy,V.J.Cunnane,Microstructural development and surface characterization of electrodeposited nickel/yttria composite coatingts,J.Electrochem.Soc.,150,C356(2003) |
[17] | X.Peng,J.Yan,C.Xu,Oxidation at 900 ℃ of the chromized coatings on A3 carbon steel with the electrodeposition pretreatment of Ni or Ni-CeO2 film,Metall.Mater.Trans.,A39,119(2008) |
[18] | J.Labell,A.Zagofsky,S.Pearman,CuKα2 elimination algorithm,J.Appl.Cryst.,8,499(1975) |
[19] | M.Paunovic,M.Schlesinger,Fundamentals of electrochemical deposition,Electrochemical Society Series,1998 |
[20] | W.Kim,R.Weil,Pulse plating effects in nickel electrodeposition,Surf.Coat.Technol.,38,289(1989) |
[21] | F.A.Doljack,R.W.Hoffman,The origins of stress in thin nickel films,Thin Solid Films,12,71(1972) |
[22] | N.S.Qu,D.Zhu,K.C.Chan,Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density,Surf.Coat.Technol.,168,123(2003) |
[23] | A.Bhandari,S.J.Hearne,B.W.Sheldon,S.K.Soni,Microstructural origins of saccharin-induced stress reduction in electrodeposited Ni,J.Electrochem.Soc.,156,D279(2009) |
[24] | Y.Nakamura,N.Kaneko,M.Watanabe,H.Nezu,Effect of saccharin and aliphatic-alcohols on the electrocrystallization of nickel,J.Appl.Electrochem.,24,227(1994) |
[25] | J.P.Bonino,P.Pouderoux,C.Rossignol,A.Rousset,Effect of saccharin addition on the physicochemical characteristics of deposists from electrolytic nickel-phosphorus baths,Plat.Surf.Fin.,78,62(1992) |
[26] | H.P.Klug,L.E.Alexander,X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials(New York,Wiley,1974)p.661 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%