欢迎登录材料期刊网

材料期刊网

高级检索

在室温条件下,通过紫外光诱导方法在 n 型单晶硅表面成功地生长出长度为1.66~5.80μm、宽度为1.27~2.84μm、厚度在0.24~0.73μm之间变化的铜微纳米粒子。采用电子显微镜(SEM)观察到单个铜粒子表面光滑,并出现数个粒子聚集形成K或L形状的粒子团聚现象。结果表明:改变溶液组分浓度和光照时间可以对铜微纳米粒子的尺寸和致密度进行有效控制。以浓度为1×10-5 mol/L罗丹明6G作探测分子,对制备的铜微纳米粒子薄膜的表面增强拉曼散射(SERS)效应进行研究,证实经过铜微纳米粒子修饰后的单晶硅对其表面吸附分子的拉曼信号确实有增强作用,这是因为铜粒子的表面等离子体效应能够提高样品表面局域场的电场强度。

Copper micro-nanoparticles with edge lengths of 1.66-5.80 μm, width of 1.27-2.84 μm and thicknesses of 0.24-0.73 μm were grown on n-type silicon wafers photoinduced by the UV light at room temperature. The electron microscope characterizations (SEM) indicate that the single copper particle has smooth surfaces and several granules gather together to form different shapes like K and L. The results show that the density and dimensions of the resulting copper micro-nanoparticles can be controlled effectively by tuning the concentration of the solution components and illumination time of the varying reaction conditions. The micro-nano copper particles film from the surface-enhanced Raman scattering (SERS) effect using 1×10-5 mol/L Rhodamine 6G as probe molecules reveal that the single-crystalline silicon modified with copper micro-nanoparticles can enhance Raman signals of interesting molecules because the surface-plasmon effects of copper particles can improve the local electric fields of the sample.

参考文献

[1] HUGHES M D;XU Yi-jun;JENKINS P;MCMORN P LANDON P ENACHE D I CARLEY A F ATTARD G A HUTCHINGS G J KING F STITT E H JOHNSTON P GRIFFIN K KIELY C J .Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions[J].NATURE,2005,437:1132-1135.
[2] Lee TH;Gonzalez JI;Zheng J;Dickson RM .Single-molecule optoelectronics[J].Accounts of Chemical Research,2005(7):534-541.
[3] PEYSER L A;VINSON A E;BARTKO A P;DICKSON R M .Photoactivated fluorescence from individual silver nanoclusters[J].SCIENCE,2001,291(5501):103-106.
[4] Sun YG.;Xia YN. .Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes[J].Analytical chemistry,2002(20):5297-5305.
[5] O'NEAL D P;HIRSCH L R;HALAS N J;PAYNE J D WEST J L .Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles[J].Cancer letters,2004,209(02):171-176.
[6] PALA R A;WHITE J;BARNARD E;LIU J BRNGERSMA M L .Design of plasmonic thin-film solar cells with broadband absorption enhancements[J].Advanced Materials,2009,21(34):3504-3509.
[7] Pillai S;Catchpole KR;Trupke T;Green MA .Surface plasmon enhanced silicon solar cells[J].Journal of Applied Physics,2007(9 Pt.1):93105-1-93105-8-0.
[8] EL-SAYED M A .Some interesting properties of metals confined in time and nanometer space of different shapes[J].ACCOUNTS OF CHEMICAL RESEARCH,2001,34(04):257-264.
[9] Catherine J. Murphy;Nikhil R. Jana .Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires[J].Advanced Materials,2002(1):80-82.
[10] Jingyi Chen;Benjamin Wiley;Zhi-Yuan Li;Dean Campbell;Fusayo Saeki;Hu Cang;Leslie Au;Jennifer Lee;Xingde Li;Younan Xia .Gold Nanocages: Engineering Their Structure for Biomedical Applications[J].Advanced Materials,2005(18):2255-2261.
[11] Hu M;Chen JY;Li ZY;Au L;Hartland GV;Li XD;Marquez M;Xia YN .Gold nanostructures: engineering their plasmonic properties for biomedical applications[J].Chemical Society Reviews,2006(11):1084-1094.
[12] Mohammad R. Hormozi Nezhad;Masato Aizawa;Lon A. Porter Jr.;Alexander E. Ribbe;Jillian M. Buriak .Synthesis and Patterning of Gold Nanostructures on InP and GaAs via Galvanic Displacement[J].Small,2005(11):1076-1081.
[13] Kuiqing Peng;Yunjie Yan;Shangpeng Gao;Jing Zhu .Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition[J].Advanced functional materials,2003(2):127-132.
[14] Lon A. Porter;Hee Cheul Choi;Alexander E. Ribbe;Jillian M. Buriak .Controlled Electroless Deposition of Noble Metal Nanoparticle Films on Germanium Surfaces[J].Nano letters,2002(10):1067-1071.
[15] Aizawa M;Cooper AM;Malac M;Buriak JM .Silver nano-inukshuks on germanium[J].Nano letters,2005(5):815-819.
[16] Haohao Lin;Jack Mock;Ting Gao;Michael J.Sailor .Surface-Enhanced Raman Scattering from Silver-Plated Porous Silicon[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2004(31):11654-11659.
[17] JIN Rong-chao;CAO Yun-wei;MIRKIN C A;KELLY K L SCHATZ G C ZHENG J G .Photoinduced conversion of silver nanospheres to nanoprisms[J].SCIENCE,2001,294(5548):1901-1903.
[18] A. Callegari;D. Tonti;M. Chergui .Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape[J].Nano letters,2003(11):1565-1568.
[19] 余凤斌,陈福义,介万奇,王涛.采用紫外光照法在磷酸盐玻璃中合成CdS/Ag复合微粒[J].发光学报,2007(01):93-98.
[20] SUN Yu-gang;XIA You-nan .Triangular nanoplates of silver:synthesis,characterization,and use as sacrificial themplates for generating triangular nanorings of gold[J].Advanced Materials,2003,15:695-699.
[21] Miranda OR;Ahmadi TS .Effects of intensity and energy of CWUV light on the growth of gold nanorods[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2005(33):15724-15734.
[22] Chung BC.;Pearce CW.;Yanders KP.;Marshall GA. .THE PREVENTION OF SI PITTING IN HYDROFLUORIC ACID CLEANING BY ADDITIONS OF HYDROCHLORIC ACID[J].Journal of the Electrochemical Society,1997(2):652-657.
[23] M. Niwano;T. -a. Miura;N. Miyamoto .Hydrogen exchange reaction on hydrogen-terminated (100) Si surface during storage in water[J].Journal of the Electrochemical Society,1998(2):659-661.
[24] Shinji Yae;Noriaki Nasu;Kohei Matsumoto;Taizo Hagihara;Naoki Fukumuro;Hitoshi Matsuda .Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions[J].Electrochimica Acta,2007(1):35-41.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%