欢迎登录材料期刊网

材料期刊网

高级检索

数控热拉伸蠕变复合成形是一种精确成形钛合金薄壁零件的新技术.该技术采用自阻加热等加热方法将先进轻质钛合金薄壁板材或型材坯料加热至热成形温度后进行数控热拉伸弯曲成形,然后适量补拉工件,接着在保温阶段保持工件贴模使材料蠕变,工件内应力发生在线松弛,从而达到减小回弹,提高零件成形精度的目的.系统介绍了钛合金薄壁零件数控热拉伸蠕变复合成形新技术的研究现状、工艺原理、关键装备、工艺技术及其优缺点,并指出了这种新技术的未来应用前景.

参考文献

[1] Lang Lihui.[J].Aeronautical Manufacturing Technology(航空制造技术),2009(10):28.
[2] Leyens C.Titanium and Titanium Alloys[J].US:John Wiley & Son Inc,2003:333.
[3] Lu Feng.[J].Journal of Materials Engineering(材料工程),2003(04):39.
[4] Lu Feng.[J].Materiais Protection(材料保护),2002(12):19.
[5] Tang Rongxi.Aircraft Sheet Metal Process[M].Beijing:National Defense Industry Press,1983:114.
[6] Germain-Bonne M .[J].Metallurgie,1969,101:469.
[7] Ullrich W .[J].Werkstatt und Betrieb,1969,99(55):339.
[8] Valance D.[J].Metallurgia and Metal Forming,1974:369.
[9] Karunasena W G .Pd Direct Resistance Heating in Sheet Metal Forming[D].Hong Kong:University of Hong Kong,1977.
[10] Maki S et al.[J].Key Engineering Materials,2007,344:309.
[11] Mori K et al.[J].CIRP ANNALS-MANUFACTURING TECHNOLOGY,2007,57:321.
[12] Maki S et al.[J].Journal of Materials Processing Technology,2002,125-126:477.
[13] Mori K et al.[J].CIRP ANNALS-MANUFACTURING TECHNOLOGY,2005,54(01):209.
[14] Mori K et al.[J].INTERNATIONAL Journal OF MACHINE TOOLS & MANUFACTURE,2006,46(15):1966.
[15] Jones J J.[A].USA:MSEC,2010
[16] Yanagimoto J et al.[J].Journal of Materials Processing Technology,2009,209(06):3060.
[17] Fan G Q et al.[J].INTERNATIONAL Journal OF MACHINE TOOLS & MANUFACTURE,2008,48(15):1688.
[18] Fahrettin Ozturk et al.[J].Key Engineering Materials,2011,473:130.
[19] Maynard K W .[P].USPatent 3021887,1962.
[20] Morris C M et al.[P].US Patent 4011429,1977.
[21] Polen L A et al.[P].USPatent 0102493,2007.
[22] Polen L A et al.[P].US Patent 0071430,2010.
[23] Minakawa K et al.[P].US Patent 0261461,2007.
[24] Minakawa K et al.[P].US Patent 0261463,2007.
[25] Zhang Yitian.[J].Machinery(机械),1982(02):56.
[26] Hang Baocheng.[J].Aeronautical Manufacturing Technology(航空制造技术),1981(09):5.
[27] Wang Yuting.[J].Aeronautical Manufacturing Technology(航空制造技术),1986(02):4.
[28] Yang Yawen .[J].Journal of Shenyang Institute of Aeronautical Engineering(沈阳航空工业学院学报),2002,19(04):10.
[29] Ju Xiaobo .Processing of Superplastic Forming by Direst Resistance Heating for AZ31 Magnesium Alloy[D].Harbin:Harbin Institute of Technology,2010.
[30] Fan Guoqiang .Research on Electric Hot Incremental Forming of Ti-6Al-4V Titanium Sheet[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010.
[31] Wang Guofeng et al.[P].CN Patent 2010010205200,2010.
[32] Yi Xiaoshu et al.[P].CN Patent 1544238,2004.
[33] Kravchenko V .[J].JETP (USSR),1966,51:1676.
[34] Aviation Manufacturing Engineering General Editor Committee.Aircraft Sheet Metal Process Manual[M].Beijing:Aviation Industry Press,1992
[35] Lin Zhaorong .[J].Rear Metal Materials and Engineering(稀有金属材料与工程),1982,21(06):51.
[36] Huang Xiaojing.[J].Aeronautical Manufacturing Technology(航空制造技术),2011(11):99.
[37] Vanderhasten M et al.[J].Materials and Design,2008,29(06):1090.
[38] LIU Yong;YIN Zhong-da;ZHU Jing-chuan;LI Ming-wei .Stress relaxation behavior of Ti-6Al-4V alloy[J].Transactions of Nonferrous Metals Society of China,2003(4):881-884.
[39] Xu Weili.[J].World Iron & Steel(世界钢铁),2009(02):30.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%