本文采用格子Boltzmann方法(LBM)对微尺度Couette流的流动及传热进行了模拟.为了获得壁面边界的速度滑移和温度阶跃,在含有粘性热耗散的热格子模型的基础上,提出了一种新的直接基于宏观量的边界处理格式.模拟得到的速度场和温度分布与解析解吻合得相当好,充分说明了本文采用的模型和边界处理的合理性同时在模拟中还发现:对于不同的Kn数,均存在使得其上壁面的温度阶跃为零的临界Ec数,并且其临界值均在3.0附近.
参考文献
[1] | Mohamed Gad-el-Hak .The fluid mechanics of microdevices--the freeman scholar lecture[J].Journal of Fluids Engineering: Transactions of the ASME,1999(1):5-33. |
[2] | 郭照立;郑楚光;李青.流体动力学的格子Boltzmann 方法[M].武汉:湖北科学技术出版社,2002 |
[3] | Nie XB.;Doolen GD.;Chen SY. .Lattice-Boltzmann simulations of fluid flows in MEMS[J].Journal of Statistical Physics,2002(1/2):279-289. |
[4] | Zhang YH;Qin RS;Emerson DR .Lattice Boltzmann simulation of rarefied gas flows in microchannels[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2005(4 Pt.2):7702-1-7702-4-0. |
[5] | Tang GH;Tao WQ;He YL .Lattice Boltzmann method for simulating gas flow in microchannels[J].International Journal of Modern Physics, C. Physics and Computers,2004(2):335-347. |
[6] | Lee T;Lin CL .Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2005(4 Pt.2):6706-1-6706-10-0. |
[7] | Guo ZL;Zhao TS;Shi Y .Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows[J].Journal of Applied Physics,2006(7):74903-1-74903-8-0. |
[8] | Sofonea V;Sekerka RF .Diffuse-reflection boundary conditions for a thermal lattice Boltzmann model in two dimensions: Evidence of temperature jump and slip velocity in microchannels - art. no. 066709[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2005(6):6709-0. |
[9] | He X;Chen S;Doolen G D .A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit[J].Journal of Computational Physics,1998,146(01):282-300. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%