析出行为.应力松弛结果表明:在奥氏体区中的应变诱导析出最侠温度范围为915 ~ 925℃,其最快析出开始时间约6.5s.同时根据实际测定的PTT曲线和模型计算的结果,推导出Nb-V-C-N系TRIP(ε =0.20,ε=0.1 s-1)的形变储能大约为2860 J·mol-.奥氏体中的沉淀相形貌只有球形或近似球形一种,析出物经能谱分析为(Nb,V)(C,N),其粒子平均尺寸为12.91 nm.","authors":[{"authorName":"黄耀","id":"d5e406e3-38de-484c-a3f6-36a9f4bafe21","originalAuthorName":"黄耀"},{"authorName":"赵爱民","id":"b45a26a3-1197-4757-b8d5-4d9e208255a9","originalAuthorName":"赵爱民"},{"authorName":"赵征志","id":"73e26d4a-2ce9-42d4-bf6b-2138625018d4","originalAuthorName":"赵征志"},{"authorName":"高绪涛","id":"ef2ea080-c33c-48ed-93e6-c7ccfe01b13c","originalAuthorName":"高绪涛"},{"authorName":"汪小培","id":"e8b16cb0-0bb6-4feb-a1a6-71044edfc586","originalAuthorName":"汪小培"}],"doi":"","fpage":"233","id":"2dfddce0-c777-49cf-b77d-64cbf564025a","issue":"z2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"8cceacf8-3349-469e-a0a3-5174c4d8eebe","keyword":"(Nb,V)(C,N)","originalKeyword":"(Nb,V)(C,N)"},{"id":"95d5ba98-783b-489f-b415-5bac62b03bc5","keyword":"析出-温度-时间曲线","originalKeyword":"析出-温度-时间曲线"},{"id":"e32a7bfa-afa7-4a85-93f7-49cbc766db4c","keyword":"形核率-温度曲线","originalKeyword":"形核率-温度曲线"},{"id":"9d651b1d-01c4-4e8c-bf8a-a427efdd7f66","keyword":"形变储能","originalKeyword":"形变储能"}],"language":"zh","publisherId":"jsrclxb2013z2049","title":"相变诱发塑性钢中Nb-V析出计算模型","volume":"34","year":"2013"},{"abstractinfo":"基于经典形核长大理论和Johnson-Mehl-Avrami方程,假定过饱和沉淀的球形第二相分子式为Mx1Mv2M1-x-v3CyN1-y,采用平均扩散速率表征合金原子对第二相形核长大过程影响的思想,建立了计算第二相析出-温度-时间(PTT)曲线的模型。基于Adrian模型提出计算多元系全固溶温度的方法,针对Fe-0.09C-0.011Ti-0.03V-0.025Nb (质量分数,%)钢计算得到的铁素体区PTT曲线呈典型的“C”形,得到的最快析出温度为628 ℃,其值与实验结果吻合。本模型计算效率高,计算析出相体积自由能变化时无需求取复合相的溶解度公式;适用性高,适用于不同基体中不同类型析出相PTT曲线的计算。
","authors":[{"authorName":"杨永","id":"2c07cdaf-8e63-4209-9dac-b3a0a3764764","originalAuthorName":"杨永"},{"authorName":"王昭东","id":"cc5e4077-b84e-4d30-968d-c761c1f996ee","originalAuthorName":"王昭东"},{"authorName":"李天瑞","id":"2affc110-09ce-4a59-9418-223e926da34c","originalAuthorName":"李天瑞"},{"authorName":"贾涛","id":"f5866743-65e6-4c24-b9e1-0d6b102efbd1","originalAuthorName":"贾涛"},{"authorName":"李小琳","id":"df15086f-cb6e-4644-bac9-70a65fec7298","originalAuthorName":"李小琳"},{"authorName":"王国栋","id":"edb2ae9e-a0e2-46ff-af72-a6bd44bd0bce","originalAuthorName":"王国栋"}],"categoryName":"Orginal Article","doi":"10.11900/0412.1961.2016.00274","fpage":"123","id":"fd7fa9a8-3444-4b4e-bd3a-4e81649177ba","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"837210f3-b6af-4b04-ad17-96dca54fbff9","keyword":"微合金钢","originalKeyword":"微合金钢"},{"id":"f8c566ee-a63a-4c8d-bd4d-a6d0198fa63f","keyword":"经典形核长大理论","originalKeyword":"经典形核长大理论"},{"id":"588b09c3-901b-49ee-bc07-500cd162a74f","keyword":"析出相","originalKeyword":"析出相"},{"id":"bb693b23-625e-493e-be1f-ab96ee4ef661","keyword":"析出-温度-时间(PTT)曲线","originalKeyword":"析出-温度-时间(PTT)曲线"}],"language":"zh","publisherId":"C20160274","title":"一种第二相析出-温度-时间曲线计算模型的建立","volume":"53","year":"2017"},{"abstractinfo":"铝上直接电镀较难,而在铝上浸锌后再电镀则相对容易.为此,以浸锌过程的电位-时间曲线来确定浸锌工艺参数.通过扫描电镜能谱分析仪(SEM-EDS)观察了相应浸锌层的形貌和成分并分析了两者之间的联系.根据电位-时间曲线研究确定了最佳浸锌工艺:100 g/L NaOH,12 g/L ZnO,45 g/L配位剂,20 g/L NiCl2,1 g/LFeCl3,浸锌温度25℃,浸锌时间第1次30 s,第2次25 s,并使用超声波进行搅拌.","authors":[{"authorName":"冯绍彬","id":"e24b8f3c-6f01-4873-b24c-f3d4fc743eed","originalAuthorName":"冯绍彬"},{"authorName":"李振兴","id":"28ca894d-e39d-4d86-ad6e-a3e9d0603d38","originalAuthorName":"李振兴"},{"authorName":"韩喜应","id":"c92a7bdf-f142-4dbf-b666-aa40d66fcd58","originalAuthorName":"韩喜应"}],"doi":"","fpage":"105","id":"a6ff6bc4-1b08-4415-90ea-71c366267a30","issue":"4","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"f074814f-0e16-40b0-a0e0-befc521b83f0","keyword":"电位-时间曲线","originalKeyword":"电位-时间曲线"},{"id":"2d08ce8a-4419-41fe-8bef-c732d90bab77","keyword":"浸锌工艺","originalKeyword":"浸锌工艺"},{"id":"91821893-b1e0-4947-9d0b-b21a3f6d5578","keyword":"铝镁合金","originalKeyword":"铝镁合金"}],"language":"zh","publisherId":"clbh201004028","title":"用电位-时间曲线选定铝浸锌工艺参数","volume":"43","year":"2010"},{"abstractinfo":"为了解拉丝用低温磷化膜的成膜机理,研究了其电位-时间(φ-t)曲线变化规律,并采用扫描电镜(SEM)观察了磷化膜的形貌,用X射线能谱对磷化成分进行了分析.结果表明,φ-t曲线和磷化膜生长过程可分为三个阶段:磷化第一阶段约15 s,电位快速正移,出现零星分布、长约10μm的磷化膜小晶粒;磷化第二阶段约45 s,电位快速负移,出现直径大小约10μm的薄片层状晶粒团,单个晶粒直径约5μm,晶粒与基底间存在底膜;磷化第三阶段约840 s,电位缓慢正移直至稳定,前期有大量晶粒形成并不断长大,后期晶粒显著长大,但数量变化不大,磷化膜不断增厚直至磷化反应终止.","authors":[{"authorName":"方峰","id":"a54318ac-a749-40ee-82a3-d7b0f0fcf38a","originalAuthorName":"方峰"},{"authorName":"马驰","id":"e7ba4ec1-9cf6-4188-8f61-ccfa841a46f3","originalAuthorName":"马驰"},{"authorName":"巩党国","id":"4ae5fc86-d1fd-4636-8044-541f8ef03376","originalAuthorName":"巩党国"},{"authorName":"曹文奎","id":"1a832261-3cf8-49f7-96cf-f19fefe15c51","originalAuthorName":"曹文奎"},{"authorName":"蒋建清","id":"ecae7969-c481-49ee-a8dc-6422e41f4acd","originalAuthorName":"蒋建清"}],"doi":"10.3969/j.issn.1001-1560.2007.10.001","fpage":"1","id":"736938fa-0503-4dd2-8f81-40f6493f18a7","issue":"10","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"192a17ed-2541-426c-838f-f07a048fd8cf","keyword":"低温","originalKeyword":"低温"},{"id":"84b208c0-7915-4747-b5bf-bb636b4f63d3","keyword":"磷化膜","originalKeyword":"磷化膜"},{"id":"9ea9e5b0-0224-4636-a949-657c3e617d50","keyword":"φ-t曲线","originalKeyword":"φ-t曲线"},{"id":"940b703f-192b-4cb0-bcfe-9299d90fec7f","keyword":"形貌","originalKeyword":"形貌"}],"language":"zh","publisherId":"clbh200710001","title":"低温磷化电位-时间曲线与成膜过程研究","volume":"40","year":"2007"},{"abstractinfo":"根据经典形核长大动力学理论,分析解决了包括相变化学自由能、界面能、形核沉淀方式等一系列相关参量的理论计算或理论处理问题,由此提出了微合金钢中微合金碳氮化物在铁素体基体中沉淀析出的PTT曲线(沉淀量-温度-时间曲线)的相对定量理论计算方法.","authors":[{"authorName":"雍岐龙","id":"3b1c4c92-cf01-470e-b97e-ffb091f8ad38","originalAuthorName":"雍岐龙"},{"authorName":"陈明昕","id":"d7959694-a030-494d-8adf-33816f7dce7f","originalAuthorName":"陈明昕"},{"authorName":"裴和中","id":"4cd6656f-58f7-4d18-8938-307fc90ab3cf","originalAuthorName":"裴和中"},{"authorName":"潘俐","id":"fba00c5a-a87b-4d93-af4a-ab96415d6cb8","originalAuthorName":"潘俐"},{"authorName":"周晓玲","id":"c8b5f109-311c-4b20-a55e-d13f1979a1e5","originalAuthorName":"周晓玲"},{"authorName":"杨天武","id":"443e7d6b-f004-4759-bee3-70de10c7aae2","originalAuthorName":"杨天武"},{"authorName":"钟卫","id":"d5dd8c37-b90e-48a0-b933-0162050e9396","originalAuthorName":"钟卫"},{"authorName":"郝建英","id":"ebc5aaf9-45b0-4615-b562-cee43da63641","originalAuthorName":"郝建英"}],"doi":"","fpage":"30","id":"556b5b5e-cb87-44cd-a829-8552f0bfb0df","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"2b53d899-7854-462c-8783-111e9e9e8b10","keyword":"微合金碳氮化物","originalKeyword":"微合金碳氮化物"},{"id":"6d3d2402-479e-4f58-8cd9-401cbd9136ab","keyword":"铁素体","originalKeyword":"铁素体"},{"id":"7ee970a4-742d-4947-bbbf-44d88440d33c","keyword":"沉淀","originalKeyword":"沉淀"},{"id":"b0cedf04-700e-45b0-96c3-1181cc47ee57","keyword":"PTT曲线","originalKeyword":"PTT曲线"},{"id":"b1fce209-fe8b-4fa1-9532-91eea0bcda32","keyword":"理论计算","originalKeyword":"理论计算"}],"language":"zh","publisherId":"gtyjxb200603008","title":"微合金碳氮化物在铁素体中沉淀析出的PTT曲线的理论计算","volume":"18","year":"2006"},{"abstractinfo":"提出了一种研究多流中间包钢液流动特性的分析方法. 首先, 利用多流中间包各流的实验数据得到多流中间包的总体停留时间分布(RTD)曲线; 其次, 采用经典的分析模型研究多流中间包的总体 RTD曲线; 最后, 以平均停留时间作为关键参数来评估多流中间包各流钢液流动特性的一致性. 此方法的优点在于避免了负死区体积的出现, 并且死区体积分率大小符合物理 事实.","authors":[{"authorName":"雷洪赵岩鲍家琳刘承军陈海耿赫冀成","id":"44783a7e-dfd3-48be-8dc6-ff25588fe2d5","originalAuthorName":"雷洪赵岩鲍家琳刘承军陈海耿赫冀成"}],"categoryName":"|","doi":"10.3724/SP.J.1037.2010.00220","fpage":"1109","id":"e3b559bc-6c77-4b29-a715-a52d2b524895","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"ee97ab94-2ac5-456f-ad02-267cc540b726","keyword":"连铸","originalKeyword":"连铸"},{"id":"3c9a47e5-8d1f-4092-9be5-eef061f75067","keyword":"multi-strand tundish","originalKeyword":"multi-strand tundish"},{"id":"417831f7-0b3d-4b02-ac2d-3037d7debc64","keyword":"whole residue time distribution (RTD)","originalKeyword":"whole residue time distribution (RTD)"},{"id":"05535a15-834c-4721-8ef5-ff4d63340ddd","keyword":"flow characterization","originalKeyword":"flow characterization"},{"id":"bf21017a-67bd-4780-9002-7f9e3ad14906","keyword":"RTD curve","originalKeyword":"RTD curve"}],"language":"zh","publisherId":"0412-1961_2010_9_13","title":"多流连铸中间包停留时间分布曲线总体分析方法","volume":"46","year":"2010"},{"abstractinfo":"提出了一种研究多流中间包钢液流动特性的分析方法.首先,利用多流中间包各流的实验数据得到多流中间包的总体停留时间分布(RTD)曲线;其次,采用经典的分析模型研究多流中间包的总体RTD曲线;最后,以平均停留时间作为关键参数来评估多流中间包各流钢液流动特性的一致性.此方法的优点在于避免了负死区体积的出现,并且死区体积分率大小符合物理事实.","authors":[{"authorName":"雷洪","id":"1f5eaa3e-894e-41d5-a459-46e528612d4d","originalAuthorName":"雷洪"},{"authorName":"赵岩","id":"6d175f68-1329-41d9-94f5-90684ff2f190","originalAuthorName":"赵岩"},{"authorName":"鲍家琳","id":"52450741-a239-4636-afaa-49c08e01c89d","originalAuthorName":"鲍家琳"},{"authorName":"刘承军","id":"05cfe397-f7df-48b3-bb47-49d76078aa6d","originalAuthorName":"刘承军"},{"authorName":"陈海耿","id":"9217dfed-e012-4624-b275-74e5fc6480a2","originalAuthorName":"陈海耿"},{"authorName":"赫冀成","id":"f7ca02ec-2483-4cab-951a-c1186aea1746","originalAuthorName":"赫冀成"}],"doi":"10.3724/SP.J.1037.2010.00220","fpage":"1109","id":"52320641-83f2-45ec-8bd2-0d35d54c8275","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"7fa158cb-65d6-46cc-81d7-7054c6202e2e","keyword":"连铸","originalKeyword":"连铸"},{"id":"3af761a5-db2e-4061-ac58-06a38142caed","keyword":"多流中间包","originalKeyword":"多流中间包"},{"id":"f1ac354e-b088-4a03-b6eb-aa6983699fb9","keyword":"总体停留时间分布(RTD)","originalKeyword":"总体停留时间分布(RTD)"},{"id":"8ab4b9af-690e-460a-b5dd-ebb70f855c82","keyword":"流动特性","originalKeyword":"流动特性"},{"id":"3f0431b1-59a3-4708-b1a6-5c06400079b0","keyword":"RTD曲线","originalKeyword":"RTD曲线"}],"language":"zh","publisherId":"jsxb201009014","title":"多流连铸中间包停留时间分布曲线总体分析方法","volume":"46","year":"2010"},{"abstractinfo":"在恒电流条件下, 将镀锡钢板作为阳极在稀盐酸中用高电流密度电解, 测定其电位E随时间t变化的曲线和相应的dE/dt--t微分曲线, 从中抽取与镀锡钢板合金层致密程度和耐蚀性有关的参数, 用支持向量机算法\n(support vector machine, SVM)和主成分分析(principal component analysis, PCA)及Fisher法等模式识别算法总结这些参数和镀锡钢板耐蚀性标准测试方法所得的合金--锡偶合电流值(alloy--tin couple value test, ATC值)的对应关系. 据此找出\n耐蚀优级镀锡钢板E--t曲线判据和优化产品耐蚀性的工艺条件. 结果表明: 可在此基础上建立监测和优化镀锡钢板耐蚀性的快速测定方法.","authors":[{"authorName":"王焜","id":"598ac4f6-30f1-47a0-bd33-84c1539a2192","originalAuthorName":"王焜"},{"authorName":"钱钢","id":"a34b8c61-d348-475b-8de5-9ec78761425d","originalAuthorName":"钱钢"},{"authorName":"陆文聪","id":"62e5f0fc-9317-4d79-84f1-36329f5c27b6","originalAuthorName":"陆文聪"},{"authorName":"陈念贻","id":"ed61ad53-7885-4106-a5a9-a05907a8fc49","originalAuthorName":"陈念贻"}],"categoryName":"|","doi":"","fpage":"759","id":"1504084c-8546-49f4-a9d6-a19e423019a9","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"37d56253-f70d-482b-8cd7-1da0d7099631","keyword":"镀锡钢板","originalKeyword":"镀锡钢板"},{"id":"c6ddf31b-1dc2-488c-8f92-be6168c3cf4e","keyword":"corrosion resistance","originalKeyword":"corrosion resistance"},{"id":"b3eb21b4-538f-40b3-a7bd-a3ad5a503c1b","keyword":"constant--current\ncoulometric method","originalKeyword":"constant--current\ncoulometric method"}],"language":"zh","publisherId":"0412-1961_2004_7_15","title":"镀锡钢板耐蚀性与恒电流阳极溶解电位--时间曲线的关系","volume":"40","year":"2004"},{"abstractinfo":"在恒电流条件下,将镀锡钢板作为阳极在稀盐酸中用高电流密度电解,测定其电位E随时间t变化的曲线和相应的dE/dt-t微分曲线,从中抽取与镀锡钢板合金层致密程度和耐蚀性有关的参数,用支持向量机算法(support vector machine,SVM)和主成分分析(principal component analysis,PCA)及Fisher法等模式识别算法总结这些参数和镀锡钢板耐蚀性标准测试方法所得的合金-锡偶合电流值(alloy-tin couple value test,ATC值)的对应关系.据此找出耐蚀优级镀锡钢板E-t曲线判据和优化产品耐蚀性的工艺条件.结果表明:可在此基础上建立监测和优化镀锡钢板耐蚀性的快速测定方法.","authors":[{"authorName":"王焜","id":"34559f48-f7b5-4d85-b7f5-500aae8c2adb","originalAuthorName":"王焜"},{"authorName":"钱钢","id":"ee8f5e98-f465-4119-986c-d33827c02bbe","originalAuthorName":"钱钢"},{"authorName":"陆文聪","id":"0af42a91-d3ef-4f38-9525-d47b488a7159","originalAuthorName":"陆文聪"},{"authorName":"陈念贻","id":"724fca7c-4e16-4e8d-9ff8-8383331c3874","originalAuthorName":"陈念贻"}],"doi":"10.3321/j.issn:0412-1961.2004.07.017","fpage":"759","id":"cdcf4083-31e4-487e-a694-57da2f4fd36d","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f97fe3a3-4feb-40cb-bbed-928db79d6b52","keyword":"镀锡钢板","originalKeyword":"镀锡钢板"},{"id":"143c1c18-7941-4707-bba8-b76cd446c8b8","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"},{"id":"3a7822aa-d18b-4757-8ce5-0121913c11b8","keyword":"恒电流阳极溶解法","originalKeyword":"恒电流阳极溶解法"},{"id":"cf092df2-c197-43fd-8e55-44a86e64f228","keyword":"电位-时间曲线","originalKeyword":"电位-时间曲线"}],"language":"zh","publisherId":"jsxb200407017","title":"镀锡钢板耐蚀性与恒电流阳极溶解电位-时间曲线的关系","volume":"40","year":"2004"},{"abstractinfo":"目前,对常温磷化成膜机理及规律的认识十分有限,进而影响了常温磷化膜的开发和应用.通过测量常温磷化过程中磷化液的开路电位-时间曲线分析了成膜规律,采用扫描电镜(SEM)考察了成膜过程中磷化膜的形貌变化,测定了膜层的耐蚀性、孔隙率随成膜时间的变化,通过X射线衍射(XRD)分析了磷化膜的相结构.结果表明:常温磷化成膜过程主要由8个阶段构成,即氧化层或其他腐蚀抑制物的溶解、形核与早期成长、晶核或初生晶粒的再溶解、快速成膜、形成完整单层覆盖层后磷化膜的增厚、再结晶、稳定的H+腐蚀扩散通道的建立、膜的生长与溶解平衡;开路电位随时间的变化很好地反映了常温磷化膜的生长规律,可用开路电位-时间曲线来监控磷化膜生长,也可将其作为筛选添加剂或改进磷化工艺的判据;改进的粘贴K3Fe(CN)6滤纸法可用于磷化膜的孔隙率测定,其测量结果与硫酸铜点滴试验结果一致;磷化膜主要由Zn3(PO4)2·4H2O,Zn2Fe(PO4)2·4H2O,Fe3(PO4)2·4H2O组成.","authors":[{"authorName":"蒋利民","id":"37b8edfc-c935-494f-a237-0a7d8f456c22","originalAuthorName":"蒋利民"},{"authorName":"杨永生","id":"469d72b1-df63-43fc-b3d2-8e90c6046fcf","originalAuthorName":"杨永生"},{"authorName":"蒋熙云","id":"f97f77bc-7258-4ade-b247-ea2fe3fb5316","originalAuthorName":"蒋熙云"},{"authorName":"邓文波","id":"d213411b-f955-49d9-a259-78ee226c44d0","originalAuthorName":"邓文波"},{"authorName":"王汉丹","id":"4c22f104-577c-4f27-9ba0-785e457d0487","originalAuthorName":"王汉丹"}],"doi":"","fpage":"51","id":"666d1320-1304-4166-afe2-82d76e6cd52d","issue":"6","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"b293f897-de2e-4512-b7aa-63116e54fe69","keyword":"常温磷化","originalKeyword":"常温磷化"},{"id":"e8e3219e-157a-472b-b582-d872983f02d2","keyword":"开路电位-时间曲线","originalKeyword":"开路电位-时间曲线"},{"id":"77565c65-3429-4c75-95c2-d260df12cd29","keyword":"成膜过程","originalKeyword":"成膜过程"},{"id":"eb6f4b31-0a7d-4f37-8920-17d1ddfe7da4","keyword":"形核","originalKeyword":"形核"},{"id":"a36dd1f3-e770-455b-8030-b1c5b0331ea5","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"clbh201106016","title":"常温磷化过程中的开路电位-时间曲线以及成膜规律","volume":"","year":"2011"}],"totalpage":7265,"totalrecord":72647}