以NaOH,Y(NO3)3·6H2O和Eu(NO3)3.6H2O为前驱体,通过添加络合剂PEG-2000,采用水热法,成功地合成了Y2O3:Eu^3+纳米棒和纳米管,并采用先进的测试手段对其结构和性能进行了表征与测试。探讨了Y2O3:Eu^3+纳米棒和纳米管的生长机制,同时研究了Y2O3:Eu^3+纳米晶的光致发光性能。研究结果表明,水热温度、反应时间、NaOH的添加量和PEG-2000对产物形貌有着非常重要的影响,所制备的材料具有Eu^3+的特征红光发射,并在Eu^3+的掺杂量为5%(摩尔分数)时样品发光最好。
Highly uniform and monodisperse Y2O3 : Eu^3+ nanorods and nanotubes were successfully prepared in large quantities using a facile hydrothermal approach assisted by a capping reagent, PEG-2000. Cheaper NaOH, Y( NO3 ) 3·6H2O and Eu( NO3 )3 · 6H2O were used as the raw materials. The formation mechanism of Y2O3 : Eu^3+ nanorods and nanotubes were discussed. The results showed that the morphologies of Y2O3 : Eu^3+ were depended on the different reaction temperatures, reaction time, the addition of NaOH and PEG-2000, and the prepared material had characteristic red emission of Eu^3+ , while identifying 5% Eu^3+ -doped Y203 had the best property of luminescence.
参考文献
[1] | Wang Y;Wang Y H .Photoluminescence of Y4 AI2 09 :Re( Re = Tb3 + ,Eu3 + )under VUV Excitation[J].Journal of Alloys and Compounds,2006,425(1-2):LS-L7. |
[2] | Yu Hua Wang;Chun Fang Wu;Jia Chi Zhang .Hydrothermal synthesis and photoluminescence of novel green-emitting phosphor Y_(1-x)BO_3:xTb~(3+)[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2006(8):1571-1577. |
[3] | Rao B Vengala;Buddhudu S .Emission Analysis of RE3 + ( Dy3 + or Tb3 + ):Ca3 Ln( Y,Gd)( VO4 )3 Powder Phosphors[J].Materials Chemistry and Physics,2008,111(01):65-68. |
[4] | Su YG;Li LP;Li GS .Self-assembly and multicolor emission of core/shell structured CaWO4 : Na+/Ln(3+) spheres[J].Chemical communications,2008(34):4004-4006. |
[5] | Nicola Pinna;Georg Garnweitner;Pablo Beato;Markus Niederberger;Markus Antonietti .Synthesis of Yttria-Based Crystalline and Lamellar Nanostructures and their Formation Mechanism[J].Small,2005(1):112-121. |
[6] | Nicola Pinna;Giovanni Neri;markus Antonietti;markus Niederberger .Nonaqueous Synthesis of Nanocrystalline Semiconducting Metal Oxides for Gas Sensing[J].Angewandte Chemie,2004(33):4345-4349. |
[7] | Vestegen J M P J .A Survey of a Group of Phosphors,Based on Hexagonal Aluminate and Gallate Host Lattices[J].Journal of the Electrochemical Society,1974,121(12):1623-1627. |
[8] | Ronda C R .Phosphors for Lamps and Displays:an Applicational View[J].Journal of Alloys and Compounds,1995,225(1 -2):534-538. |
[9] | Bolchouchine VA.;Levonovitch BN.;Litchmanova VN.;Sochtine NP.;Goldburt ET. .Designed, highly-efficient FED phosphors and screens[J].Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter,2000(0):1277-1279. |
[10] | Xun Wang;Xiaoming Sun;Dapeng Yu;Bingsuo Zou;Yadong Li .Rare Earth Compound Nanotubes[J].Advanced Materials,2003(17):1442-1445. |
[11] | Yue-Ping Fang;An-Wu Xu;Li-Ping You;Rui-Qi Song;Jimmy C. Yu;Hua-Xin Zhang;Quan Li;Han-Qin Liu .Hydrothermal Synthesis of Rare Earth (Tb, Y) Hydroxide and Oxide Nanotubes[J].Advanced functional materials,2003(12):955-960. |
[12] | Tkachenko E A;Fedorov P P .Lower Rare-Earth Molybdates[J].lnorgMater,2003,39:25-45. |
[13] | Wu XC;Tao YR;Mao CJ;Liu DJ;Mao YQ .In situ hydrothermal synthesis of YVO4 nanorods and microtubes using (NH4)(0.5)V2O5 nanowires templates[J].Journal of Crystal Growth,2006(1):207-212. |
[14] | Li QS;Feng CH;Jia QZ;Guo L;Liu CM;Xu HB .Shape-controlled synthesis of yttria nanocrystals under hydrothermal conditions[J].Physica Status Solidi, A. Applied Research,2004(14):3055-3059. |
[15] | Xue B;Song HW;Yu LX et al.Luminescent Properties of Pure Cubic Phase Y203/Eu::+ Nanotubes/Nanowires Prepared by a Hydrothermal Method[J].Journal of Physical Chemistry B,2005,109(32):15236-15242. |
[16] | Wan J X;Wang Z H;Chen X Y et al.Shape-Tailored Photolu-minescent Intensity of Red Phosphor Y203:Eu3+[J].Journal of Crystal Growth,2005,284(3 -4):538-543. |
[17] | Xu Z X;Hong Z L;Zhao Q C et al.Preparation and Lumines-cence Properties of Y203:Eu3 + Nanorods via Post Annealing Proeess[Jl[J].Journal of Rare Earths,2006,24(01):111-114. |
[18] | Hart M;Shi N E;Zhang W L et al.Large-Scale Synthesis of Single-Crystalline RE2 03 ( RE = Y,Dy,Ho,Er)Nanobehs by aSolid-Liquid-Phase Chemical Route[J].Journal of Neurochemistry-Supplement,2008,14(05):1615-1620. |
[19] | Yu He;Ye Tian;Yongfa Zhu .Large-scale Synthesis of Luminescent Y_2O:Eu Nanobelts[J].Chemistry Letters,2003(9):862-863. |
[20] | Zeng Suyuan;Tang Kaibin;Li Tanwei et al.3D Flower-Like Y2 03 :Eu3 + Nanostruetures :Template-Free Synthesis and Its Lu-minescence Properties[J].Journal of Colloid and Interface Science,2007,316:921-929. |
[21] | Zhong Shengliang;Wang Shijin;Xu Huaping et al.Spindlelike Y2 03 :Eu3 + Nanorod Bundles:Hydrothermal Synthesis and Pho-toluminesccnee Properties[J].Journal of Materials Science,2009,44:3687-3693. |
[22] | Wu Xiaoyong;Liang Yujun;Liu Rong et al.The Photolumines-cence Properties of Y203:Eu3 + Prepared by Surfactant Assisted Co-Precipitation-Molten Salt Synthesis[J].Materi Res Bull,2010,45:594-597. |
[23] | McDevitt N T;Davidson A D .Infrared Lattice Spectra of Cubic Rare Earth Oxides in the Region 700 to 50 cm-1 [Jl[J].Journal of the Optical Society of America,1966,56:636-638. |
[24] | Gong Hua;Tang Dingyuan;Huang Hui et al.Effect of Grain Size on the Sinterability of Yttria Nanopowders Synthesized by Carbonate-Precipitation Process[J].Materials Chemistry and Physics,2008,112:423-426. |
[25] | Zhang K;Pradhan A K;Loutts G B et al.Enhanced Lumines-cence and Size Effects of Y203:Eu3 + Nanoparticles and Ceram-ics Revealed by x-Rays and Raman Scattering[J].Journal of the Optical Society of America B:Optical Crystal Physics,2004,21:!804-1807. |
[26] | Dhanaraj J;Jagannathan R;Kutty T R N et al.Photolumines-cence Characteristics of Y203 :Eu3 + Nanophosphors Prepared Using Sol-gel Thermolysis[J].Journal of Physical Chemistry B,2001,105:l1098-11105. |
[27] | 张世英,魏坤.纳米晶Y2O3:Eu3+红色荧光体的发光性质研究[J].光谱学与光谱分析,2004(04):407-410. |
[28] | 杨雷,唐元洪,陈江华,陈小华,王倩,张伟,姜志.Y2O3∶Eu3+纳米管阵列的荧光和拉曼光谱研究[J].功能材料,2008(02):205-208,212. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%