欢迎登录材料期刊网

材料期刊网

高级检索

The corrosion of pure yttrium and of a cobalt alloy containing approximately 15 wt% yttrium was studied at 600-800 degrees C in H-2-CO2 mixtures providing an equilibrium oxygen pressure of 10(-24) atm at 600 degrees C and 10(-20) atm at 700 and 800 degrees C. The corrosion of yttrium under these low oxygen pressures resulted in the growth of Y2O3 scales which was rather protective at 800 degrees C, presenting two approximately parabolic stages with a smaller rate Constant at longer times, but non-protective and faster at lower temperature. The oxidation of Co-15Y was rather irregular under all conditions, but generally slow: in particular, at 800 degrees C the rate decreased almost to zero after about 17 h oxidation. The oxidation of this alloy produced a thin external layer of pure cobalt metal overlying a region of internal oxidation, where the Y-rich phase was transformed into a mixture of cobalt metal and yttrium oxide. The microstructure of the internal oxidation region followed closely that of the original alloy, while no yttrium depletion was observed beneath the front of internal oxidation. These results are examined by taking into account the low solubility of Y in Co and the existence of an intermetallic compound in the alloy. (C) 1997 Elsevier Science Ltd.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%