利用阴离子交换膜为隔膜将电解槽分为两室, 控制阴极室电极的恒定电流密度, 在电解过程中消耗阴极室溶液中的H+浓度, 促使TiO2+与电解产
生的OH-中和水解反应, 形成TiO2·xH2O均匀沉淀, 在不同温度的热处理后,得到不同晶型的纳米TiO2微粒. TEM和XRD分析表明: 在773K焙
烧2h后, TiO2微粒呈锐钛矿型结构, 粒径约为 30~50nm; 在873K热处理后可得到金红石相约占3.85%的锐钛矿型和金红石型混晶结构的TiO2
粉体. 本文对其形成的机理进行了初步的探讨.
The electrolyser was divided into the cathode chamber and the anode chamber by the septum of the anion-exchange membrane. When hydrogen ions in the cathode chamber were consumed under
the electrolyzing process with a constant current density on the cathode, titanyl ions were promoted to react to hydroxide ions produced by electrolyzing
to form uniform deposition of hydrous titania. Titania with different crystal phaseswas produced under different temperatures. TEM and XRD analyses show that the
nanoparticles are spherical and with the average size from 30 to 50nm at 773K, and mainly anatase phase at 873K containing
3.85% rutile. The mechanism of forming ultrafine powder was elementarily investigated.
参考文献
[1] | 任莉, 祖庸. 化工新型材料, 1997, 6: 15-16. [2] 周幸福, 楮道葆, 顾家山. 安徽化工, 2001, 6: 29-31. [3] 谢宪英. 上海化工, 2001, 4: 37-39. [4] 谢宪英. 上海化工, 2001, 5: 16-18. [5] Weast R C. CRC Handbook of Chemistry and Physics, 1985-1986, 66: 151-155. [6] 张立德, 牟季美编著. 纳米材料学, 第一版.沈阳: 辽宁科学技术出版社, 1994. 76-78. [7] Spurr R A, Myers H. J. Anal. Chem., 1957, 29: 760-762. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%