欢迎登录材料期刊网

材料期刊网

高级检索

基于元胞自动机有限单元法(CAFE)对国内某钢厂220mm×220mm方坯的三维显微凝固组织进行模拟,分析了CAFE法模拟凝固过程显微组织的物理本质,对形核密度、枝晶尖端生长动力学、枝晶生长的择优取向以及FE与CA耦合的实现分别进行了探讨。用该方法对方坯的三维显微组织进行模拟,并对结晶器出口处方坯的角部温度、中心表面温度及坯壳厚度进行了计算。模拟结果表明:当拉速为0.85m/min,浇铸温度为1 535℃,浇钢过热度为30℃时,结晶器出口处方坯角部温度在850~950℃之间,中心表面温度在1 050~1 170℃之间,坯壳厚度在15mm左右,铸坯柱状晶发达,等轴晶比率较小。模拟的铸坯组织的等轴晶比例与低倍试验结果吻合较好,可以很好地预测方坯实际凝固组织。

Based on the coupled method of cellular automation(CA) method and finite element(FE) method,the solidification microstructure of 220 mm×220 mm cast billet was simulated.The nucleation density,kinetics of the dendrite tip growth,crystallographic orientation,coupling of FE and CA method were discussed respectively.The temperature field at the mould exit and the thickness of the billet was calculated.The results show that the corner temperature is between 850 ℃ and 950 ℃,surface temperature is between 1 050 ℃ to 1 170 ℃,the thickness of the solidified shell is 15mm,when the casting speed and casting temperature is 0.85 m/min,1 535 ℃,respectively.The columnar grain is well developed and the ratio of equiaxed grain is low.The 3D microstructure of billet steel can be simulated by the CAFE method due to its agreement with experimental results.

参考文献

[1] Nastac L;Stefaneseu D M .Stochastic Modelling of Micro-structure Formation in Solidification Processes[J].Modelling & Simulation in Materials Science and Engineering,1997,5(04):391.
[2] Rappaz M;Gandin C A .Prohabilistie Modelling of Microstrue-ture Formation in Solidification Processes[J].Acta Metallur-gica et Materialia,1993,41(02):345.
[3] Gandin C A;Rappaz M .A Coupled Finite Element Cellular Automation Model for the Prediction of Dendritic Grain Struc-ture in Solidification Processes[J].Acta Metallurgica Et Materialia,1994,42(07):2233.
[4] Zhn M F;Kim J M;Hong C P .A Modified Cellular Automa-tion Model for the Simulation of Dendritic Growth in Solidifica tion of Alloy[J].ISIJ International,2001,41(05):436.
[5] ZHU M F;HONG C P .Modeling of Globular and Dendritic Structure Evolution in Solidification of an AI-7mass/0Si Alloy[J].ISIJ International,2001,41(09):992.
[6] LUO Y Z;ZHANG J M;WEI X D et al.Numerical Simula tion of Solidification Structure of High Carbon SWRH77B Bil let Based on the CAFE Method[J].Ironmaking and Steelmak ing,2012,39(05):26.
[7] 侯卫周,曹新国,徐宏.铸件凝固过程微观组织模拟研究状况[J].铸造,2006(10):1047-1051.
[8] 胡坤太,仇圣桃,张慧,张兴中,干勇.用蒙特卡罗法模拟连铸坯的凝固组织[J].钢铁研究学报,2004(02):27-32.
[9] 杨爱民,刘林.凝固组织计算机微观模拟技术的现状与发展[J].机械工程材料,2002(04):20-22.
[10] Ch.-A.GANDIN;M.RAPPAZ .A 3D CELLULAR AUTOMATION ALGORITHM FOR THE PREDICTION OF DENDRITIC GRAIN GROWTH[J].Acta materialia,1997(5):2187-2195.
[11] Kurz W;Giovanola B;Trivedi R .Theory ofMicrostructural Development During Rapid Solidification[J].Acta Metallur-gica,1986,34(05):823.
[12] Yan Yu;Qijie Zhai;Libo Zhang .A Comparison Study between Suspension Casting Process and Low Superheat Casting Process[J].Journal of University of Science and Technology Beijing,1999(1):31-34.
[13] HUANG X;Thomas B G;Nallar F M .Modeling Superheat Removal During Continuous Casting of Steel Slabs[J].Met-allurgical and Materials Transactions,1992,23B(03):339.
[14] B. ZHAO;B.G. THOMAS;S.P. VANKA .Transient Fluid Flow and Superheat Transport in Continuous Casting of Steel Slabs[J].Metallurgical and Materials Transactions, B. Process metallurgy and materials processing science,2005(6):801-823.
[15] 翁宇庆.超细晶钢[M].北京:冶金工业出版社,2003
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%