欢迎登录材料期刊网

材料期刊网

高级检索

利用二维小角X射线散射技术(SAXS),结合纤维孔结构解析理论及分形原理得到了炭纤维形成过程中纺丝、预氧化、低温和高温炭化等四个阶段样品的微孔结构信息.结果表明:原丝中孔隙沿纤维轴向择优取向,呈长梭状,其长轴与短轴的平均尺寸分别为24.3 nm和19.2 nm,长径比为1.27.遗留到预氧化阶段的原丝孔洞使得预氧化纤维出现高达1.85的长径比极大值,这可能与原丝线性结构向预氧丝耐热梯形结构转化有关.炭化阶段微孔尺寸迅速减小,长轴、短轴分别达到3.56 nm和2.85 nm左右,长径比也减小至1.24.分形状态研究表明:表面分形维数D_S值介于2.42~2.88之间,且随工艺的进行逐渐增大,低温炭化阶段变化幅度较大,说明各级产品在微观结构上越来越复杂,亦证明低温炭化是促进炭纤维微观结构转变的重要的工艺段.

Microvoids,formed in spinning,oxidation and carbonization during the preparation of PAN-based carbon fibers,were investigated by two-dimensional small angle X-ray scattering.Results indicated that microvoids in PAN fibers had a preferred elongation and orientation along the fiber axis with an average length of 24.3 nm,diameter of 19.2 nm and aspect ratio of around 1.27.The size of the microvoids remained almost unchanged during oxidation,while their aspect ratio increased to 1.85,possibly due to a crystalline transformation from a linear structure in PAN fibers to a heat-resistant ladder structure in oxidized fibers.However,the size of the microvoids decreased dramatically to about 3.56 nm in the long axis and 2.85 nm in the short axis during carbonization.The surface fractal dimension (Ds) increased in these processes from 2.42 to 2.88 and the most severe change occurred in low-temperature carbonization,indicating that surface roughness increased during processing,and carbonization was the most important process for such a transformation.

参考文献

[1] 王茂章.聚丙烯腈基炭纤维[J].新型炭材料,1998(04):79.
[2] 赵稼祥,王曼霞.复合材料用高性能炭纤维的发展和应用[J].新型炭材料,2000(01):68-75.
[3] 贺福.炭纤维及其应用技术(HE Fu.Carbon Fibers and Applied Technology[M].Beijing:Press of Chemical Industry,2004.)[M].北京:化学工业出版社,2004
[4] Guinier A;Fournet G.Small Angle Scattering of X-ray[M].New York:Wiley,1955:134-135,177-182.
[5] Perret R;Ruland W .The microstructure of PAN-base carbon fibers[J].Journal of Applied Crystallography,1970,3:525-532.
[6] Shoiya M;Takaku A .Characterization of microvoids in carbon fibers by absolute small-angle X-ray measurements on a fiber bundle[J].Journal of Applied Physics,1985,58(11):4074-4082.
[7] Takaku A;Shioya M .Characterization of microvoids in polyacrylonitrile-based carbon fibres[J].Journal of Materials Science,1986,21:4443-4450.
[8] N. COHAUT;J.M GUET;R. DIDUSZKO .SAXS investigations on the porosity of pitch based carbon fibres[J].Carbon: An International Journal Sponsored by the American Carbon Society,1996(5):674-676.
[9] Bale H D;Schmidt P W .Small-Angle X-ray-scattering investigation of submicroscopic porosity with fractal properties[J].Physical Review Letters,1984,53(06):596-599.
[10] 孟昭富.小角X射线散射理论及应用(MENG Zhao-fu,Theory and Application of Small Angle X-ray Scattering[M].Changchun:Jilin Science Press,1996:22-32,189-195.)[M].长春:吉林科学技术出版社,1996:22-32,189-195.
[11] 李向山,华中,王文宇.炭纤维微观结构研究现状与未来的浅见[J].新型炭材料,1997(02):1-3.
[12] 徐跃,李向山.炭纤维中纳米微孔的X射线小角散射分析[J].理化检验-物理分册,2003(01):28-31.
[13] 高忠民,徐跃,黄科科,李向山.炭化条件对炭纤维纳米微孔分形维数的影响[J].吉林大学学报(理学版),2005(01):91-94.
[14] 陈宇晗,吴琪琳,潘鼎.不同纤维素原丝及其制备的炭纤维的分形比较[J].炭素,2006(03):19-23.
[15] 郭从容;王雪松;杨桂琴 等.分形理论及其在材料科学中的应用[J].半导体杂志,1999,24(01):38-42.
[16] 张济忠.分形(ZHANG Ji-zhong.Fractal[M].Beijing:Tsinghua University Press,1995.)[M].北京:清华大学出版社,1995
[17] Andreas F.Thu1nemann;Ruland W .Microvoids in polyacrylonitrile fibers:a small-angle X-ray scattering[J].Macromolecules,2000,33:1848-1852.
[18] Crawshaw J. .A small angle X-ray scattering study of pore structure in Tencel cellulose fibres and the effects of physical treatments[J].Polymer: The International Journal for the Science and Technology of Polymers,2000(12):4691-4698.
[19] 李志宏 .SAXS方法及其在胶体和介孔材料研究中的应用[D].中国科学院山西煤炭化学研究所,2002.
[20] C.Gavrilov;M.Sheintuch .Etching of mass, surface, and porous fractal solids[J].Industrial & Engineering Chemistry Research,1997(8):2915-2923.
[21] Bale H D;Schmidt P W .Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties[J].Physical Review Letters,1984,53(06):596-599.
[22] Mildner D F R;Hall P L .Small-angle scattering from porous solids with fractal geometry[J].Journal of Physics D:Applied Physics,1986,19:1535-1545.
[23] Sinha S K .Scattering from fractal structures[J].Physical Review D,1989,38:310-314.
[24] 徐满才;史作清;何炳林 .大孔标准苯乙烯-二乙烯苯共聚物的分形结构研究[J].湖南师范大学自然科学学报,1997,20(02):51-
[25] 马礼敦;杨福家.同步辐射应用概论(MA Li-dun,Yang Fu-jia.Introduction to synchrotron radiation application[M].Shanghai:Fudan Press,2005:154-156.)[M].上海:复旦大学出版社,2005:154-156.
[26] Bohn C R;Schaefgen J R;Statton W O .Laterally ordered polymers:polyacrylonitrile and poly(viny1 trifluoroacetate)[J].Journal of Polymer Science,1961,55:331-549.
[27] A. GUPTA;I. R. HARRISON .NEW ASPECTS IN THE OXIDATIVE STABILIZATION OF PAN-BASED CARBON FIBERS[J].Carbon: An International Journal Sponsored by the American Carbon Society,1996(11):1427-1445.
[28] 吕春祥,吴刚平,吕永根,李开喜,李永红,梁晓怿,贺福,凌立成.聚丙烯腈原丝氧化工艺的研究[J].新型炭材料,2003(03):186-190.
[29] 张利珍,吕春祥,吕永根,吴刚平,贺福.聚丙烯腈纤维在预氧化过程中的结构和热性能转变[J].新型炭材料,2005(02):144-150.
[30] M.S.A. Rahaman;A.F. Ismail;A. Mustafa .A review of heat treatment on polyacrylonitrile fiber[J].Polymer Degradation and Stability,2007(8):1421-1432.
[31] 王艳芝,朱波,王延相,蔡华苏.聚丙烯腈基炭纤维的制备[J].新型炭材料,2001(04):12-17.
[32] 吴刚平 .聚丙烯腈纤维预氧化过程中结构演变的研究[D].中国科学院山西煤炭化学研究所,2005.
[33] Jain M K;Abhiraman A S .Conversion of acrylonitrile-based precursor fibres to carbon fibres.Part 1 A review of the physical and morphological aspects[J].Journal of Materials Science,1987,22:278-300.
[34] Xiaoliang Wang;Rong He;Yongli Chen .Evolution of porous fractal properties during coal devolatilization[J].Fuel,2008(6):878-884.
[35] Ismail I M K;Pfeifer P .Fractal analysis and surface roughness of nonporous carbon fibers and carbon blacks[J].LANGMUIR,1994,10:1532-1538.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%