欢迎登录材料期刊网

材料期刊网

高级检索

使用冰滴为致孔剂制备表面大孔、内部孔洞相连的新型壳聚糖(HPCS)支架, 将其与聚乳酸复合制备出三维蜂窝状孔洞结构的复合支架(THCP)。对HPCS和THCP进行了表面形貌、力学性能、细胞相容性等方面的表征, 并与常规冻干法所制备的壳聚糖(CS)海绵进行了对比。结果表明, 在HPCS海绵表面均匀分布着大而开放的孔洞, 大孔内部形成相互贯通的小孔, 在THCP复合海绵内部形成了相互贯通的蜂窝状结构。THCP支架的力学强度比纯壳聚糖支架有明显的提高, 其细胞活性及细胞增殖指数等都明显优于HPCS及CS海绵。因此, 对壳聚糖拓扑结构的这种设计不仅弥补了常规冻干支架的缺陷, 提高了细胞相容性, 还将表面图案化改性应用延伸到了三维尺度。

A novel hierarchically porous chitosan (HPCS) sponge with large open pores and interconnected small pores on the surface was fabricated with ice particles as poroen. The honeycomb patterned porous composite scaffolds (HPCS) was obtained by immersing the sponges into poly (L-lactic acid) chloroform solution. A comparison of the morphology, mechanical properties and cell compatibility with the three different sponges were made. Results show that honeycomb patterned porous structure is visible in the THCP sponges, wherein interconnected micro pores embedded in larger open pores and formed uniform network. Hierarchically porous structure is visible in the HPCS sponges. The compressive strength of the THCP sponges dramatically increased, cell viability and cell proliferation index (PI) are higher than that of the CS and HPCS sponges. The topographical design of chitosan scaffolds remedied the traditional freeze-drying technique, improved cell biocompatibility and elongated the design of topological structure into the three dimension area.

参考文献

[1]
[2] S.Pakakrong, S.Orawan, N.Artphop, C.Poonlarp, P.Prasit, S.Pitt, In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells, European, Polymer Journal, 3(46), 428(2010)

2 W.Teo, W.He, S.Ramakrishna, Electrospun scaffold tailored for tissue-specific extracellular matrix, Biotechnol., 1(9), 918(2006)

3 I.Kim, S.Seo, H.Moon, M.Yoo, I.Park, B.Kim, C.Cho, Chitosan and its derivatives for tissue engineering applications, Biotechnol. Adv., 26(1), 1(2008)

4 A.Martino, M.Sittinger, M.Risbud, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering, Biomaterials, 26(30), 5983(2005)

5 E.Khor, L.Lim, Implantable applications of chitin and chitosan, Biomaterials, 23(24), 2339(2003)

6 Y.Huang, M.Siewe, S.V.Madilhally, Effect of spatial architecture on cellular colonization, Biotechnol. Bioeng., 93(1), 64(2006)

7 H.Zhang, I.Hussain, M.Brust, M.F.Butler, S.P.Rannard, Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles, Cooper AI. Nat. Mater., 4(10), 787(2005)

8 G.Chen, T.Ushida, T.Tateishi, Scaffold design for tissue engineering, Macromol. Biosci., 2(2), 67(2002)

9 S.Rui, X.Rui, H.Ling, L.Ying, X.Qiao, The structure and properties of chitosan/polyethyleneglycol/silica ternary hybrid organic-inorganic films, Chinese Journal of Polymer Science, 26(5), 621(2008)

10 K.Whang, E.Healy, D.R.Elenz, Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture, Southern Biomedical Engineering Conference&ndash
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%