采用离子交换法制备Co, Cr及Al掺杂LiMnO_2,通过X射线衍射、扫描电子显微镜和恒电流充放电等技术检测和分析合成产物的物相、形貌及电化学性能.研究表明掺杂后LiMnO_2仍然保持原来的结构,但晶粒形貌发生了改变,晶格常数总体变小.与未掺杂的LiMnO_2相比,Co、Cr及Al掺杂LiMnO_2具有更高的放电容量和更好的循环性能.随着掺杂量的增加,Co、Cr及Al掺杂LiMnO_2的放电容量逐步下降,但循环性能不断改善.在掺杂的LiMnO_2中,LiMn_(0.95)Cr_(0.05)O_2的放电容量最高,达到198.1mAh/g,而LiMn_(0.85)Al_(0.15)O_2的放电容量最小,LiMn_(0.90)Cr_(0.10)O_2循环性能最好,而Co掺杂的循环性能最差.
Cathode materials of Co, Cr and Al doped LiMnO_2 for lithium ion battery were prepared by ion exchange. Phase identification, surface morphology and electrochemical properties were studied by X-ray diffraction, scanning electron microscopy and galvanostatic charge-discharge experiments. The results show that the crystal parameter of doped LiMnO_2 is generally smaller than the undoped LiMnO_2. The surface morphology of the doped LiMnO_2 is different from LiMnO_2, while both structures are the same. All the doped LiMnO_2 offers higher discharge capacity and better cycling performance than LiMnO_2. The discharge capacity of the doped LiMnO_2 decreases, yet the cycling performance improves with the increase of doping concentration. For these doped LiMnO_2, LiMn_(0.95)Cr_(0.05)O_2 offers the highest discharge capacity of 198.1mAh/g and LiMn_(0.85)Al_(0.15)O_2 offers the lowest. The cycling performance of LiMn_(0.90)Cr_(0.10)O_2 is the best, while cobalt doped LiMnO_2 is the worst.
参考文献
[1] | Ceder G;Mishra S K .[J].Electrochemical and Solid-State Letters,1999,2:550. |
[2] | Armstrong A R;Bruce P G .[J].Nature,1996,381:499. |
[3] | Julien C M;Banov B;Momchilov A et al.[J].Journal of Power Sources,2006,159:1365. |
[4] | Kim J U;Jo Y J;Park G C et al.[J].Journal of Power Sources,2003,119:686. |
[5] | Park KS;Cho MH;Jin SJ;Nahm KS;Hong YS .Effect of Li ion in transition metal sites on electrochemical behavior of layered lithium manganese oxides solid solutions[J].Solid state ionics,2004(1/2):141-146. |
[6] | Hwang SJ.;Park HS.;Choy JH. .Variation of chemical bonding nature of layered LiMnO2 upon delithiation/relithiation and Cr substitution[J].Solid state ionics,2002(1/4):275-283. |
[7] | Guo ZP.;Wang GX.;Liu HK.;Dou SX. .Structure and electrochemistry of LiCrxMn1-xO2 cathode for lithium-ion batteries[J].Solid state ionics,2002(3/4):359-366. |
[8] | Myung ST;Komaba S;Kurihara K;Kumagai N .Hydrothermal phase formation of orthorhombic LiMnO2 and its derivatives as lithium intercalation compounds[J].Solid state ionics,2006(7/8):733-739. |
[9] | Lee Y S;Sun Y K;Adachi K et al.[J].Electrochimica Acta,2003,48:1031. |
[10] | Eriksson T A;Doeff M M .[J].Journal of Power Sources,2003,119:145. |
[11] | Captiaine F;Gravereau P;Delmas C .[J].Solid State Ionics,1996,89:197. |
[12] | Guo ZP.;Wang GX.;Liu HK.;Dou SX. .Structure and electrochemistry of LiCrxMn1-xO2 cathode for lithium-ion batteries[J].Solid state ionics,2002(3/4):359-366. |
[13] | Myung S T;Komaba S;Hirosaki N et al.[J].Journal of Power Sources,2003,119-121:211. |
[14] | 谷亦杰,周恒辉,常文保,Gu Yijie,Zhou Henghui,Chang Wenbao.掺Cr对LiMnO2的影响[J].稀有金属材料与工程,2004(08):789-792. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%