欢迎登录材料期刊网

材料期刊网

高级检索

采用鱼骨状试样裂纹试验、SEM和DSC等分析方法研究Sc、Zr和Er的复合添加对新型Al-5.6Mg-1.0Zn-0.6Mn基填充合金焊接热裂敏感性的影响.结果表明:Sc、Zr和Er(含Ti)参与形核核心Al3(Sc,X)的生成,Er(Ti)元素在晶界处形成富Er相,这对试验合金焊道熔池区域的晶粒度和晶间相富集状态影响显著;优化的Sc、Zr和Er成分配比能获得优异的晶粒细化效果,并抑制含Er相对晶界结合的恶化作用,使合金获得较高的焊接热裂抗力;焊接热裂敏感性降低的机理为合金偏析程度的降低、凝固终了温度的相对提高、细小晶粒的转动滑移和细晶晶界应力的分散.

参考文献

[1] 中国机械工程学会焊接学会.焊接手册(第2卷)[M].北京:机械工业出版社,2001
[2] A. F. Norman;S. S. Birley;P. B. Prangnell .Development of new high strength Al-Sc filler wires for fusion welding 7000 series aluminium aerospace alloys[J].Science and Technology of Welding and Joining,2003(4):235-245.
[3] 陈苏里,姜锋,尹志民,雷学锋,聂波.含钪与不含钪铝镁钪合金焊接接头的组织与性能[J].中国有色金属学报,2006(05):835-840.
[4] S. R. Koteswara Rao;B. Kamsala Devi;K. Sreenivasa Rao;K. Prasad Rao .Thermo-mechanical treatments of Sc- and Mg-modified Al-Cu alloy welds[J].The International Journal of Advanced Manufacturing Technology,2009(1/2):16-24.
[5] B. S. Murty;S. A. Kori;M. Chakraborty .Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J].International Materials Reviews,2002(1):3-29.
[6] Norman AF.;Hyde K.;Costello F.;Thompson S.;Birley S.;Prangnell PB. .Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):188-198.
[7] D.G. Eskin;Suyitno;L. Katgerman .Mechanical properties in the semi-solid state and hot tearing of aluminium alloys[J].Progress in materials science,2004(issue 5):629-711.
[8] 王业双,王渠东,丁文江,卢晨.合金的热裂机理及其研究进展[J].特种铸造及有色合金,2000(02):48-50.
[9] Kim HT.;Hwang SH.;Nam SW. .STUDY ON THE SOLIDIFICATION CRACKING BEHAVIOUR OF HIGH STRENGTH ALUMINUM ALLOY WELDS - EFFECTS OF ALLOYING ELEMENTS AND SOLIDIFICATION BEHAVIOURS[J].Journal of Materials Science,1996(11):2859-2864.
[10] G. D. Janaki Ram;T. K. Mitra;V. Shankar .Microstructural refinement through inoculation of type 7020 Al-Zn-Mg alloy welds and its effect on hot cracking and tensile properties[J].Journal of Materials Processing Technology,2003(1):174-181.
[11] 董晟全,周敬恩,严文,梁艳峰,杨通.Al-4.5Cu合金热裂倾向的研究[J].兵器材料科学与工程,2003(01):44-47.
[12] D.G. Eskin;L. Katgerman .Effect of structure on hot tearing properties of aluminum alloys[J].Materials Science Forum,2007(2):995-998.
[13] DEV S;MURTY B S;RAO K P .Effects of base and filler chemistry and weld techniques on equiaxed zone formation in Al-Zn-Mg alloy welds[J].Science and Technology of Welding and Joining,2008,13(07):598-606.
[14] 丁浩,傅恒志.晶界状态对定向凝固Al-Cu和Renel25合金热裂倾向的影响[J].稀有金属材料与工程,2000(04):228-230.
[15] MOUSAVI M G;CROSS C E;GRONG O .The effect of high-temperature eutectic-forming impurities on aluminum 7108 weldability[J].Welding Journal,2009,88(z5):104-110.
[16] LIU E K;YANG F B;XU J;SHI L K .Effects of microalloying on grain refinement behaviors and hardness properties of wedge-shaped Al-Mg-Mn castings[J].Transactions of Nonferrous Metals Society of China,2007,17(z1):308-313.
[17] 杨福宝,刘恩克,徐骏,石力开.Er对Al-Mg-Mn-Zn-Sc-Zr-(Ti)填充合金凝固组织与力学性能的影响[J].金属学报,2008(08):911-916.
[18] Harada Y.;Dunand DC. .Microstructure of Al3Sc with ternary transition-metal additions[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(0):686-695.
[19] METZ S A;FLEMINGS M C .Hot tearing in cast metals[J].AFS Transactions,1969,77:329-334.
[20] METZ S A;FLEMINGS M C .A fundamental study of hot tearing[J].AFS Transactions,1970,78:453-460.
[21] 邱武,罗吉荣,李东南.ZL201合金铸件裂纹产生的原因分析[J].中国铸造装备与技术,2005(01):27-29.
[22] Yeshuang Wang;Qudong Wang;Guohua Wu;Yanping Zhu;Wenjiang Ding .Hot-tearing susceptibility of Mg-9Al-xZn alloy[J].Materials Letters,2002(4):929-934.
[23] DVORNAK M J;FROST R H;OLSON D L .The weldability and grain-refinement of Al-2.2Li-2.7Cu[J].Welding Journal,1989,68(z8):327-335.
[24] S. LIN;C. ALIRAVCI;M.O. PEKGULERYUZ .Hot-Tear Susceptibility of Aluminum Wrought Alloys and the Effect of Grain Refining[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2007(5):1056-1068.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%