提出基于两级敏度分析的稳态非线性热传导反问题的求解策略,建立了便于非线性正演和反演的有限元模型,由此可直接求导进行敏度分析,同时还考虑了非均质和分布参数的影响.对非线性热物性参数和边界条件的反演,进行了数值验证,取得了令人满意的结果,并对信息误差作了初步探讨.
参考文献
[1] | 黄光远;刘小军.数学物理反问题[M].济南:山东科学技术出版社,1993 |
[2] | Huang C H;B H Chao .An Inverse Geometry Problem in Identifying Irregular Boundary Configurations[J].International Journal of Heat and Mass Transfer,1997,40:2045-2053. |
[3] | Huang C H;Osizik M N .Optimal Regularization Method to Determine the Unknown Strength of a Surface Heat Source[J].International Journal of Heat and Mass Transfer,1991,12:173-178. |
[4] | Jarny Y;Osizik M N;Bardon J P .A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction[J].International Journal of Heat and Mass Transfer,1991,34:2911-2919. |
[5] | R W Lewis;K Morgan;H R Thomas.The Finite Element Method in Heat Transfer Analysis[M].Chichester:John Wiley & Son,1996 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%