欢迎登录材料期刊网

材料期刊网

高级检索

应用量子路径积分的方法,分析了高能重离子碰撞产生的高重子数密度粒子发射源的2K和2π干涉学(Hanbury-Brown-Fwiss,HBT关联).利用相对论流体动力学描述源的演化,采用的状态方程包含QGP到强子相的一级相变和对强子气体的体积修正.在2π关联的计算中考虑了激发态粒子衰变和多重散射效应,并将其HBT关联半径和寿命与传统热冻结模型的结果进行了对比.计算表明,早期化学冻结产生的K介子的HBT关联半径比2π关联的HBT关联半径小.激发态粒子的衰变使HBT关联半径和寿命增加,而多重散射对HBT关联的结果几乎没有影响.

Using quantum path-integral formulae, we examined the two-kaon and two-pion Hanbury-Brown-Twiss (HBT) interferometry for the particle-emitting source with high baryon density. The evolution of the source is described by relativistic hydrodynamics. We use an equation of state of first-order transition from QGP to hadronic phase and consider a volume correction for the hadronic gas. The two-pion HBT results with effects of excited-particle decay and multiple scattering were investigated and compared with those for conventional thermal freeze-out (TFO) model. We found that the two-kaon HBT radius was smaller than those of the two-pion interferometry. The particle decay increases the HBT radius and lifetime, while the effect of multiple scattering on HBT results can be neglected.

参考文献

[1] Wong C Y.Introduction to High-energy Heavy-ion Collisions.Singapore:World Scientific,1994,141-142.
[2] STAR Collaboration,Adler C.Ahammed Z.Allgower C,et al.Phys Rev Lett,2002,89:202 301.
[3] Gyulassy M,Mclerran L.Nucl Phys,2005,A750:30.
[4] Conceptual Design Report.http://www.gsi.de/GSI-Fu-ture/cdr/.
[5] Hirano T,Tsuda K.Phys Rev,2002,C66:054 905.
[6] Petersen H,Li Q F,Zhu X L,et al.Phys Rev,2006,C74:064 908.
[7] Lisa M A,Pratt S,Soltz R,et al.Ann Rev Nucl Part Sci,2005,55:357;nucl-ex/0505014.
[8] Tang Guixin,Zhang Weining,Liu Yiming,et al.Nuclear Physics Review,2004,21(3):191(in Chinese).(唐圭新,张卫宁,刘亦铭等.原子核物理评论,2004,21(3):191.)
[9] E895 Collaboration,Lisa M A,Ajitanand N N,Alexander J M,et al.Phys Rev Lett,2000,84:2 789.
[10] PHENIX Collaboration,Adler S S,Afanasiev S,Aidala C,et al.Phys Rev Lett,2004,93:152 302.
[11] Bernard S,Rischke D H,Maruhn J A,et al.Nuel Phys,1997,A625:473.
[12] Wong C Y.J Phys,2004,G30:S1 053.
[13] Wong C Y.J Phys,2003,G29:2 151.
[14] Yu Lili,Zhang Weining,Wong C Y.Submit to Phys Rev C;arXiv:hep-ph/0805.1484.
[15] Yu Lili,Jiri Mutu,Zhang Weining,et al.To be published in Chinese Physics C.
[16] Glauber R J.Lectures in Theoretical Physics.New York:Interscience,1959,315.
[17] Rischke D H,Gyulassy M.Nucl Phys,1996,A608:479.
[18] Rischke D H.Proceedings of the 11th Chris Engelbrecht Summer School in Theoretical Physics,Cape Town,February,1998;arXiv:nucl-th/9809044.
[19] Schneider V,Katscher U,Rischke D H,et al.J Comput Phys,1993,105:92.
[20] Sod G A.J Fluid Mech,1977,83:785.
[21] Zhang Weining,Efaaf M J,Wong C Y.Phys Rev,2004,C70:024 903.
[22] Zhang Weining,Efaaf M J,Wong C Y,et al.Chin Phys Lett,2004,21:1918.
[23] Hung C M,Shuryak E.Phys Rev,1998,C57:1891.
[24] Landau L D,Lifshitz E M.Statistical Physics.London:Perg-amon Press,1980.5:Part 1.
[25] Toneeva V D,Nikonova E G,Frimana B,et al.Eur Phys J 2003,C32:399.
[26] Ivanov Yu B,Russkikh V N,Toneev V D.Phys Rev,2006,C73:044 904.
[27] Subramanian P R,Stocker H,Greiner W.Phys Lett,1986,B173:468.
[28] Cleymans J,Redlich K.Phys Rev,1999,C60:054 908.
[29] Martin B R,Morgan D,Shaw G.Pion-pion Interaction in Particle Physics.London:Academic Press,1976,101.
[30] Yndurain F J.arXiv:hep-ph/0212282.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%