采用溶胶凝胶法在58S生物玻璃的基础上用氧化锌取代3mol%的氧化钙制备了含锌的生物玻璃粉体(58S3Z),对合成的粉体采用有机泡沫浸渍法在700℃及1200℃制备出58S3Z-700℃、58S3Z-1200℃玻璃及玻璃陶瓷多孔支架.在所得支架表面涂覆PLGA及PBS薄膜制备出58S3Z-1200℃-PLGA及58S3Z-1200℃-PBS复合支架.对其形貌、孔隙率、力学性能、体外降解性及细胞相容性进行了系统研究.复合后多孔支架仍然保持三维连通的多孔结构,孔隙率与复合前(86.9%±0.8%(58S3Z-700℃),80.1%±0.6%(58S3Z-1200℃))相比稍有下降,分别为75.9%土0.6%(58S3Z-1200℃-PLGA)和77.9%士0.9%(58S3Z-1200℃-PBS).但复合多孔支架显示出较高的抗压强度,分别达到1509.4kPa±162.8kPa(PLGA)和901.6 kPa±94.5kPa(PBS),与玻璃和玻璃陶瓷支架(258.4 kPa±23.6kPa)相比具有较大的提高.体外降解实验表明58S3Z-1200℃-PLGA、58S3Z-1200℃-PBS复合多孔支架可降解,经过28天的浸泡其失重率分别达到13.3%和2.1%.体外研究结果表明:58S3Z玻璃陶瓷支架复合PBS或PLGA后支持成骨细胞黏附、铺展和生长.这种新型的复合支架具有三维的网状多孔结构,良好的力学性能、降解性和细胞相容性,有望成为一种较理想的骨组织工程支架.
参考文献
[1] | 左奕,李玉宝,张翔,等,纳米复合支架结构与生物学性能[J].复合材料学报,2005,22(6):32-36.Zuo Yi,Li Yubao,Zhang Xiang,et al.Structure and biological properties of nano-composite scaffold[J].Acts Materiae Compositae Sinica,2005,22(6):32-36. |
[2] | Wang M.Developing bioactive composite materials for tissue replacement[J].Biomaterials,2003,24(13):2133-2151. |
[3] | 杨志明,组织工程[M].北京:化学工业出版社,2002:1-5. |
[4] | 严永刚,李玉宝,张利,等,纳米HA/PA6复合材料的体外生物活性[J].复合材料学报,2004,21(2):147-152.Yan Yonggang,Li Yubao,Zhang Li,et al.In vitro bioactivity of PA6 and nano-HA/PA6 composite[J].Acta Materiae Compositae Sinica,2004,21(2):147-152. |
[5] | Carter D R,Spengler D M.Mechanical properties and composition of cortical bone[J].Clinical Orthopaedics & Related Research,1978,135:192-217. |
[6] | 杨辉,张林,张宏,等,丝素蛋内/羟基磷灰石复合材料的制备及性能表征[J].复合材料学报,2007,24(3):141-146.Yang Hui,Zhang Lin,Zhang Hong,et al.Preparation and characterization of the silk fibroin/hydroxyapatite composites[J].Acta Materiae Compositae Sinica,2007,24(3):141-146. |
[7] | 杜瑞林,Na、Mg、Zn、Ti掺杂58S生物活性玻璃和玻璃陶瓷的制备与性能研究[D].上海:中国科学院上海硅酸盐研究所,2006. |
[8] | Ishaug-Riley S L,Crane-Kruger G M,Yaszemski M J,et al.Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers[J].Biomaterials,1998,19(15):1405-1412. |
[9] | Lo H,Kadiyala S,Guggino S E,et al.Poly(L-latic acid)foams with cell seeding and controlled-release capacity[J].Journal of Biomedical Materials Research,1996,30(4):475-484. |
[10] | Lu H H,El-Amin S F,Scott K D,et al.Three-dimensional,bioactive,biodegradable,polymer-bioactive glass composite scaffolds with improve mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro[J].Journal of Biomedical Materials Research,2003,64A(3):465-474. |
[11] | Verrier S,Laker J J,Maquet V,et al.PDLLA/Bioglass(R)composites for soft-tissue and hard-tissue engineering:An in vitro cell biology assessment[j].Biomaterials,2004,25(15):3013-3021. |
[12] | Lj H Y,Chang J,Can A M,et al.In vitro evaluation of biodegradable poly(butylene succinate)as a novel biomaterial[J].Macromoleeular Bioscience,2005,5(5):433-440. |
[13] | Zhong J P,Greenspan D C.Processing and properties of solgel bioactive glasses[J].Journal of Biomedical Materials Research Part B:Applied Biomatcrial,2000,53(6):694-701. |
[14] | Ozgür Engin N,Cüneyt Tas A.Manufacture of macroporous calcium hydyoxyapatite bioceramics[J].Journal of the European Ceramic Society,1999,19(13/14):2569-2572. |
[15] | Lin H R,Yeh Y J.Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering:Preparation,characterization,and in vitro studies[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2004,71B(1):52-65. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%