Minor alloying plays an important role in the synthesis and improvement of thermal stability of bulk metallic glasses (BMGs). The present study was conducted to investigate the effect of minor additions of Y, Ti and Nb on crystallization behavior and thermal properties of Zr64.5Ni15.5Al11.5Cu8.5 base alloy. Thermal parameters and the activation energies for crystallization were calculated for four [Zr0.645Ni0.155Al0.115Cu0.085]100-xMx (M = Y, Ti and Nb while x = 0, 2 at. %) alloys. Parameters describing thermal stability in these systems, including the activation energies for crystallization, were determined. The present alloys have wide supercooled liquid region of ≥87 K. Maximum activation energy was found to be greater than 300 kJ/mol for the base alloy. Four crystalline phases were identified in the samples annealed at 823 K. Reduced glass transition temperature (Trg) and other thermal parameters like γ, δ and β improved by Y and Ti addition. Niobium addition resists crystallization below annealing temperature 713 K however its effect on thermal properties is not very promising.
参考文献
[1] | A. Inoue and N. Nishiyama: Mater. Res. Bull., 2007, 32, 651.[2 ] A.R. Yavari, J.J. Lewandowski and J. Eckert: Mater. Res. Bull., 2007, 32, 635.[3 ] W.H. Wang: Prog. Mater. Sci., 2007, 52, 540.[4 ] K. Fujita, A. Inoue and T. Zhang: Mater. Trans. JIM, 2001, 42, 1502.[5 ] M. Iqbal, J.I. Akhter, W.S. Sun, H.F. Zhang and Z.Q. Hu: J. Alloy. Compd., 2006, 422, 218.[6 ] M. Iqbal, W.S. Sun, H.F. Zhang, J.I. Akhter and Z.Q. Hu: Mater. Sci. Eng. A, 2007, 447, 167.[7 ] M. Iqbal, Z.Q. Hu, H.F. Zhang, W.S. Sun and J.I. Akhter: J. Non-Cryst. Solids, 2006, 352, 3290.[8 ] M. Iqbal, J.I. Akhter, W.S. Sun, J.Z. Zhao, M. Ahmad, W. Wei, Z.Q. Hu and H.F. Zhang: Mater. Lett., 2006, 60, 662.[9 ] W. Dong, H.F. Zhang, W. Sun, B.Z. Ding and Z.Q. Hu: Mater. Trans., 2006, 47, 1294.[10] L. Liu, C.L. Qiu, M. Sun, Q. Chen, K.C. Chan and G.K.H. Pang: Mater. Sci. Eng. A, 2007, 449-451,193.[11] Z.P. Lu and C.T. Liu: J. Mater. Sci., 2004, 39, 3965.[12] C.T. Liu and Z.P. Lu: Intermetallics, 2005, 13, 415.[13] A. Inoue, T. Shibata and T. Zhang: Mater. Trans. JIM, 1995, 36, 1420.[14] C. Fan, H. Choo and P.K. Liaw: Scripta Mater., 2005, 53, 1407.[15] W.H. Wang, Z.B. Bian, P. Wen, Y. Zhang, M.X. Pan and D.Q. Zhao: Intermetallics, 2002, 10, 1249.[16] X.D. Hui, H.C. Kou, J.P. He, Y.L. Wang, W. Dong and G.L. Chen: Intermetallics, 2002, 10, 1065.[17] G. He, Z.F. Zhang, W. Loser, J. Eckert and L. Schultz: Acta Mater., 2003, 51, 2383.[18] M. Iqbal, J.I. Akhter, H.F. Zhang and Z.Q. Hu: J. Mater. Sci. Technol., 2007, 23, 693.[19] A. Takeuchi and A. Inoue: Mater. Trans., 2005, 46, 2817.[20] J.B. Qiang, W. Zhang, Q. Xie and A. Inoue: Mater. Trans., 2007, 48, 1789.[21] Z.P. Lu, H. Bei and C.T. Liu: Intermetallics, 2007, 15, 618.[22] Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, J.F. Sun and D.G. McCartney: Mater. Sci. Eng. A, 2006, 433, 155.[23] Z.Z. Yuan, S.L. Bao, Y. Lu, D.P. Zhang and L. Yao: J. Alloy. Compd., 2008, 459, 251.[24] Z.L. Long, H.Q. Wei, Y.H. Ding, P. Zhang, G.Q. Xie and A. Inoue: J. Alloy. Compd., 2009, 475, 207.[25] M. Iqbal, J.I. Akhter, Z.Q. Hu, H.F. Zhang, A. Qayyum and W.S. Sun: J. Non-Cryst. Solids, 2007, 353, 2452.[26] M. Iqbal, J.I. Akhter, H.F. Zhang and Z.Q. Hu: J. Non-Cryst. Solids, 2008, 354, 3291.[27] A. Hruby: Czech. J. Phys. B., 1972, 22, 1187.[28] M. Saad and M. Poulain: Mater. Sci. Forum, 1987, 19, 11.[29] M.L.F. Nascimento, L.A. Souza, E.B. Ferreira and E.D. Zanotto: J. Non-Cryst. Solids, 2005, 351, 3296.[30] Y. Li: J. Mater. Sci. Technol., 1999, 15, 97.[31] Y.X. Zhuang, W.H. Wang, Y. Zhang, M.X. Pan and D.Q. Zhao: Appl. Phys. Lett., 1999, 75, 2392.[32] H.E. Kissinger: Anal. Chem., 1957, 29, 1702.[33] H.R. Wang, Y.L. Gao, Y.F. Ye, G.H. Min, Y. Chen and X.Y. Teng: J. Alloy. Compd., 2003, 353, 200.[34] W. Chen, Y. Wang, J. Qiang and C. Dong: Acta Mater., 2003, 51, 1899.[35] C. Dong, Y.M. Wang, J.B. Qiang, D.H. Wang, W.R. Chen and C.H. Shek: Mater. Trans., 2004, 45, 1177. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%