欢迎登录材料期刊网

材料期刊网

高级检索

Nanocrystalline CdS thin films have been deposited using precursors with different thiourea concentration onto glass substrates by sol-gel spin coating method. The crystalline nature of the films has been observed to be strongly dependent on thiourea concentration and annealing temperature. The CdS films are found to be nanocrystalline in nature with hexagonal structure. The grain size is found to be in the range of 7.6 to 11.5 nm depending on the thiourea concentration and annealing temperature. The high resolution transmission electron microscopy (HRTEM) results of the CdS films prepared using cadmium to thiourea molar ratio of 0.3:0.3 indicate the formation of nanocrystalline CdS with grain size of 5 nm. Fourier transform infrared (FTIR) analysis shows the absorption bands corresponding to Cd and S. The optical study carried out to determine the band gap of the nanostructured CdS thin films shows a strong blue shift. The band gap energy has been observed to lie in the range of 3.97 to 3.62 eV following closely the quantum confinement dependence of energy on crystallite radius. The dependence of band gap of the CdS films on the annealing temperature and thiourea concentration has also been studied. The photoluminescence (PL) spectra display two main emission peaks corresponding to the blue and green emissions of CdS.

参考文献

[1]
[2] T.L. Chu, S.S. Chu, C. Ferekides, J. Britt and C.Q. Wu: J. Appl. Phys, 1992, 71, 3870.
[2] C. Ferekides and J. Britt: Sol. Energy Mater. Sol. Cells, 1994, 35, 255.
[3] C. Capoen, T. Gacoin, J.M. Nedelec, S. Turrell and M. Bouazaovi: J. Mater. Sci, 2001, 36, 2565.
[4] A. Blanco, C. Lopez, R. Mayoral, H. Migucz, F. Meseguer, A. Mitsud and J. Herrero: Appl. Phys. Lett, 1998, 73, 178.
[5] V. Tasco, M.T. Todaro, M.D. Giorgi, R. Cingolani, P. Passaseo, J. Ratajczak and J.W. Katcki: Appl. Phys. Lett, 2004, 84, 4155.
[6] Q. Darugar, W. Qian and M.A. El-Sayed: Appl. Phys. Lett, 2006, 88, 261108.
[7] P. Oelhafen and A. Schuler: Sol. Energy, 2005, 79, 110.
[8] W.G.J.H.M. Van Sark, A. Meijerink, R.E.I. Schropp, J.A.M. Van Rroosmalen and E.H. Lysen: Sol. Energy Mater. Sol. Cells, 2005, 87, 395.
[9] R. Devi, P. Purkayastha, P.K. Kalita and B.K. Sarma: Bull. Mat. Sci, 2007, 30, 123.
[10] K.S. Ramaiah, A.K. Bhatnagar, R.D. Pilkington, A.E. Hill and R.D. Tomlinson: J. Mater. Sci. Mater. Electron, 2000, 11, 269.
[11] H. Nasu, J. Matsuoka and Kamiya: J. Non-Cryst. Solids, 1994, 178, 148.
[12] K.R. Murali, S. Kumaresan and J. Joseph Prince: J. Mater. Sci. Mater. Electron, 2007, 18, 487.
[13] X.L. Tong, D.S. Jiang, W.B. Hu, Z.M. Liu and M.Z. Luo: Appl. Phys. A, 2006, 84, 143.
[14]R.W. Birkmire, B.E. McCandless and S.S. Hegedus: Sol. Energy, 1992, 12, 45.
[15] B. Pradhan, A.K. Sharma and A.K. Ray: J. Cryst. Growth, 2007, 304, 388.
[16] P. Raji, C. Sanjeeviraja and K. Ramachandran: Bull. Mater. Sci, 2005, 28, 233.
[17] Y.A. Kalandaragh, M.B. Muradov, R.K. Mammedov and A. Kaodayari: J. Cryst. Growth, 2007, 305, 175.
[18] D. Patidar, R. Sharma, N. Jani, T.P. Sharma and N.S. Saxena: Bull. Mater. Sci, 2006, 29, 21.
[19] J.M. Dona and J. Herrero: J. Electrochem. Soc, 1997, 144, 408.
[20] R. Ortega-Borges and D. Lincol: J. Electrochem. Soc, 1993, 140, 3464.
[21] I. Kaur, D.K. Pandya and K.L. Chopra: J. Electrochem. Soc, 1980, 127, 943.
[22]M. Maleki, M.S. Ghamsari, Sh. Mirdamadi and R. Ghasemzadeh: Semicond. Phys., Quantum Electron. Optoelectron., 2007, 10, 30.
[23]K. Kajihara, K. Nakanishi, K. Tanaka, K. Hirao and N. Soga: J. Am. Ceram. Soc., 1998, 81, 2670.
[24] K. Kajihara and T. Yao: J. Sol-Gel Sci. Technol, 2000, 17, 173.
[25]T.P. Martin and H. Schaber: Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 1982, 38, 655.
[26] N.N. Parvathy, G.M. Pajonk and A.V. Rao: J. Mater. Synth. Process, 1999, 7, 221.
[27] B.K. Rai, H.D. Bist, R.S. Katiyar, M.T.S. Nair, P.K. Nair and A. Manivannan: J. Appl. Phys, 1997, 82, 1310.
[28] Y. Yang, H. Chen and X. Bao: J. Cryst. Growth, 2003, 252, 251.
[29]L. Qi, H. Colfen and M. Antonietti: Nano Lett., 2001, 1, 65.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%