A golden yellow-colored cerium conversion coating was obtained on 304 stainless steel surface by immersing the steel into a solution containing cerium (III), KMnO4 and sulfuric acid. The corrosion resistance of the coatings was evaluated by electrochemical methods, potentiodynamic polarization experiments and electrochemical impedance spectrum. The experimental results indicated that the corrosion resistance for the conversion coated 304SS in 3.5% NaCl solution increased markedly. The corrosion potential of the treated steel increased to a more noble level, the pitting corrosion potential increased also, the passive potential range was enlarged markedly and the passive current density decreased about one order compared to that of the untreated steel. The cathodic and anodic reaction were both inhibited to some extent. The chemical state of the elements in the coatings was investigated by XPS. The cerium element was in the form of tetravalent state. And AES depth profile analysis suggested that the thickness of the conversion coatings was less than 66 nm. The mechanisms of coatings formation and corrosion resistance are discussed. (C) 2003 Elsevier Ltd. All rights reserved.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%