采用真空热压工艺制备了含SiC颗粒体积分数分别为5%,15%和25%的SiC颗粒增强铝基复合材料,利用Hopkinson高速压杆冲击实验系统对其从静态到动态(应变率为3.3×10-3s-1~5.2×103s-1)的压缩破坏响应进行了研究,结合其光学显微镜分析变形组织,分析了不同体积分数SiCp/Al复合材料高应变率压缩载荷下,材料的变形和微观损伤机理.结果表明,复合材料存在应变率敏感性,SiC含量的增加导致复合材料应变率敏感性的增加,以垂直于载荷方向的增强相颗粒的剪切开裂为主要破坏模式.
参考文献
[1] | Y.LI;K.T.Ramesh .Viscoplastic deformations and compressive damage in an A359/SiC_p metal-matrix composite[J].Acta materialia,2000(7):1563-1573. |
[2] | HONG S l;Grayiii G T;Lewandowski J J .Dynamic Deformation Behavior of Al-Zn-Mg-Cu Alloy Matrix Composites Reinforced with 20vol% SiC[J].Acta Metallurgy,1993,41:2337-2351. |
[3] | G. BAO;Z. LIN .HIGH STRAIN RATE DEFORMATION IN PARTICLE REINFORCED METAL MATRIX COMPOSITES[J].Acta materialia,1996(3):1011-1018. |
[4] | GUDEN M;Hall I M .High Strain-Rate Compression Testing of a Shot-Fiber Reinforced Aluminum Composites[J].Materials Science and Engineering A,1997,232:1-10. |
[5] | Harding J.Materials at High Strain Rates[M].London:Elsevier,1985:137-139. |
[6] | Gao Huajian;Huang Yonggang .Geometrically Necessary Dislocation and Size-Dependent Plasticity[J].Scripta Materialia,2003,48(02):113-118. |
[7] | Dai L H;Ling Z;Bai Y L .Astrain Gradient-Strengthening Law for Particle Reinforced Metal Matrix Composites[J].Scripta Materialia,1999,41(03):245-251. |
[8] | Mochida T;Taya M;Lloyd D J .[J].MATERIALS TRANSACTIONS,1991,32(10):931-942. |
[9] | San Marchi C.;Cao FH.;Kouzeli M.;Mortensen A. .Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):202-211. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%