通过在816和927 ℃下进行总应变控制的不同拉伸应变保持时间的低周疲劳实验,研究了3种高温合金(HAYNES 188, HAYNES 230和HASTELLOY X)的蠕变-疲劳交互作用行为.结果表明,这3种高温合金的应变疲劳寿命主要取决于合金类型、应变保持周期及实验温度. 这些高温合金所表现出的不同应变疲劳寿命行为可归因于蠕变和氧化损伤方面的差异. 此外,应用频率修正的非弹性拉伸应变能作为损伤函数对这3种合金进行了应变疲劳寿命预测,结果显示该寿命预测方法对3种高温合金均表现出较好的寿命预测能力.
The low-cycle fatigue tests with tensile hold times ranging from 0 to 60 min were conducted for 3 superalloys, HAYNES 188, HAYNES 230 and HASTELLOY X, at 816 ℃ and 927 ℃ under a total strain range control mode to investigate their creep-fatigue interaction behaviors. It was found that under creep-fatigue loading condition, the strain fatigue lives of the three superalloys are dependent on the type of the alloy, duration of strain hold, and test temperature. The different strain fatigue life behaviors exhibited by the three superalloys are related to the difference in the damages from creep and oxidation. In addition, the frequency-modified tensile hysteresis energy modeling was used to correlate the present strain fatigue life data. The result showed that this modeling could give a satisfactory prediction on the creep-fatigue lives of the three superalloys.
参考文献
[1] | |
[2] | |
[3] | |
[4] | |
[5] | |
[6] | |
[7] |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%