欢迎登录材料期刊网

材料期刊网

高级检索

对二次硬化超高强度AerMet 100钢,通过引入预时效并优化双时效(即预时效+正常时效)工艺,膜状逆转变奥氏体(AR)中合金元素Ni、Co含量的起伏有利于提高其稳定性并降低M,温度.高分辨透射电子显微镜(HRTEM)与扫描电子显微镜(SEM)分析表明:膜状AR在原奥氏体晶粒及马氏体铁素体(MF)板条边界形成,其间同时存在的K-S和N-W位向关系使有效晶粒由原奥氏体晶粒减小为MF板条(其厚度约80 nm);试样断面大而深的韧窝及高的撕裂棱反映出裂纹尖端钝化和分岔会吸收大量能量,在抗拉强度(δb)>2000 MPa条件下断裂韧度(KIC=127 MPa·m1/2)提高20%.

参考文献

[1] 赵振业,李春志,李志,刘天琦,马新闻.探索强韧化机理,创新超高强度高韧性不锈钢[J].中国有色金属学报,2004(z1):202-206.
[2] Hemphill,Raymond M .High strength,high fracture toughness alloy[P].US Patent.5268044,1993.
[3] 赵振业.超高强度钢中二次硬化现象研究[J].航空材料学报,2002(04):46-55.
[4] Ayer R;Machmeier P M .Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1993,24:1943-1955.
[5] E.U. LEE .SCC Path in Forged AerMet 100 Steel[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1995(5):1313-1316.
[6] Koji Sato .Improving the toughness of uhrahigh strength steel[D].USA:Berkeley,University of California,2002.
[7] 赵振业.先进飞机结构材料的发展[J].材料工程,1995(01):4.
[8] Wang L D;Jiang L Z;Zhu M et al.Combining strength and toughness in ultrahigh strength steel[J].Journal of Physics D:Applied Physics,2004,37:2151-2154.
[9] Guo Z .The Limits of strength and toughness in steel[D].USA:Berkeley,Univemity of California,2001.
[10] Miihkinen V T T;Edmonds D V .Tensile deformation of two experimental high-strength bainitic low-alloy steels containing silicon[J].Materials Science and Technology,1987,3:432-440.
[11] Liuding WANG,Laizhu JIANG,Ming ZHU,Xiao LIU,Wangmin ZHOU.Improvement of Toughness of Ultrahigh Strength Steel Aermet 100[J].材料科学技术学报(英文版),2005(05):710-714.
[12] 康沫狂,朱明.淬火合金钢中的奥氏体稳定化[J].金属学报,2005(07):673-679.
[13] Thelning K E.In Steels and Its Heat Treatment,2nd ed[M].London:butterworth,1984
[14] Nishiyama Z.In Martensitic Transformation[M].New York:Academic Press,Inc,1978
[15] J.W. MORRIS;Z. GUO;C. R. KRENN .The Limits of Strength and Toughness in Steel[J].ISIJ International,2001(6):599-611.
[16] 高宽,王六定,朱明,陈景东,施易军,康沫狂.低合金超高强度贝氏体钢的晶粒细化与韧性提高[J].金属学报,2007(03):315-320.
[17] 刘云旭.金属热处理原理[M].北京:机械工业出版社,1981
[18] 冯瑞;王业宁;丘第荣.金属物理[M].北京:科学出版社,1975
[19] Verheeven J D.Foundamentals of Physical Metallurgy[M].New York:John Wiley and Sons,Inc,1975
[20] 徐祖耀.马氏体相变与马氏体[M].北京:科学出版社,1999
[21] 范继美;万光珉.位错理论及其在金属切削中的应用[M].上海:上海交通大学出版社,1991
[22] 胡光立;谢希文.钢的热处理[M].西安:西北工业大学出版社,2008
[23] Adams R;Alstetter C .Thermodynamics of the cobalt transformation[J].TMS-AIME,1986,242:139-143.
[24] 徐祖耀.马氏体相变与马氏体[M].北京:科学出版社,1980
[25] 王六定 .超高强度钢Aermet 100力学性能及连续转变理论研究[D].西北工业大学,2000.
[26] Miihkinen V;Edmonds .Tensile deformation of two experimental high-strength bainitic low-alloy steels containing silicon[J].Materials Science and Technology,1987,3:432-440.
[27] 王六定,朱明,陈景东,施易军,陈国栋.低碳超高强度贝氏体钢的组织细化[J].材料热处理学报,2007(05):42-45.
[28] 李杰,王丽,李志,张景海,颜鸣皋.热处理对高Co-Ni超高强度钢冲击断口的影响[J].航空材料学报,2008(01):35-39.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%