采用直流电弧等离子体法结合原位钝化法制备Mg-Nb和Mg-Nb2O5复合储氢材料超细粉体,并利用ICP、XRD、TEM、P-C-T、TG-DTA等测试手段研究对比粉体的成分、相组成、微观形貌、颗粒粒径和吸放氢性能.ICP分析显示Mg-Nb粉中Nb含量高于Mg-Nb2O5粉,但均低于初始含量.XRD和TEM皆在Mg-Nb粉中发现MgNb2O3.67相,而Mg-Nb2O5中有NbO2.46新相生成.Mg-Nb粉的P-C-T曲线吸放氢平台更平坦,滞后更小;计算出Mg-Nb粉的氢化生成焓为-73.33 kJ/mol H2,低于Mg-Nb2O5粉的-82.45 kJ/mol H2.氢化后粉体的TG-DTA分析,Mg-Nb粉的放氢峰更尖锐,放氢速度更快.Mg-Nb粉体更佳的热力学和动力学性能证明钝化引入的氧化物MgNb2O3.67起到了催化作用,而Mg-Nb2O5中的NbO2.46由于含量少、分布不均匀等原因催化效果差.以上结果证明经过钝化获得氧化物的催化效果好于直接电弧蒸发.
参考文献
[1] | Elam C C;Padro C E G;Sandrock G et al.[J].International Journal of Hydrogen Energy,2003,28:601. |
[2] | 胡子龙.贮氢材料[M].北京:化学工业出版社,2002:86. |
[3] | Nakamori Y;Ninomiya A;Kitahara G et al.[J].Journal of Power Sources,2006,155(02):447. |
[4] | Chen P;Zhu M .[J].Materials Today,2008,11(12):36. |
[5] | Sullivan E A;Wade R C.Kirk-Othmer Encyclopedia of Chemical Technology[M].New York:John Wiley and Sons,Inc,1980:772. |
[6] | Seayad A M;Antonelli D M .[J].Advanced Materials,2004,16:765. |
[7] | Oelerich W;Klassen T;Bormann R .[J].Journal of Alloys and Compounds,2001,315:237. |
[8] | Barkhordarian G;Klassen T;Bormann R .[J].Scripta Materialia,2003,49:213. |
[9] | Friedrichs O;Klassen T;Sanchez-Lopez J C et al.[J].Scripta Materialia,2006,54:1293. |
[10] | Friedrichs O;Aguey Z F;Fernandez J R A et al.[J].Acta Materialia,2006,54:105. |
[11] | Wagner R S;Ellis W C .[J].Applied Physics Letters,1964,4:89. |
[12] | Ohno S;Uda M .[J].Journal of the Japan Institute of Metals,1984,48:640. |
[13] | Huber K P;Herzberg G.Molecular Spectra and Molecular Structure (O) Constants of Diatomic Molecules[M].New York:Van Nostrand Reinhold Company Inc,1979 |
[14] | Liu T;Zhang Y H;Li X G .[J].Scripta Materialia,2003,48:397. |
[15] | Shao H Y;Wang Y T;Xu H R et al.[J].Materials Science and Engineering B,2004,110:221. |
[16] | Dean I A.Lange's Handbook of Chemistry[M].New York:McGraw-Hill,1992 |
[17] | Zou J X;Zeng X Q;Ying Y J et al.[J].International Journal of Hydrogen Energy,2012,37:13067. |
[18] | Robert Varin A;Tomasz Czujko;Wronski Z S.Nanomaterials for Solid State Hydrogen Storage[M].Waterloo:Springer,2009 |
[19] | 孟祥海,张金龙,王伟,朱明,葛建生.Nb和热处理对Ti-V-Cr贮氢合金滞后性能的影响[J].上海金属,2010(03):38-42. |
[20] | Rabkin E;Skripnyuk V M .[J].Scripta Materialia,2003,49:477. |
[21] | Nakamura H.;Pettifor DG.;Nguyen-Manh D. .Electronic structure and energetics of LaNi5, alpha-La2Ni10H and beta-La2Ni10H14[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,1998(2):81-91. |
[22] | Nambu T;Ezaki H;Yukawa H et al.[J].Journal of Alloys and Compounds,1999,293:213. |
[23] | Shao H;Wang Y;Xu H et al.[J].Materials Science and Engineering B,2004,110:221. |
[24] | 孙海全,邹建新,曾小勤,丁文江.纯Mg及Mg-Nd超细粉体的制备及其储氢性能[J].稀有金属材料与工程,2012(10):1819-1823. |
[25] | Dornheim M;Eigen N;Barkhordarian G et al.[J].Advances in Engineering Materials,2006,8(05):377. |
[26] | Pelletier J F;Huot J;Sutton M et al.[J].Physical Review B:Condensed Matter,2001,63:052103. |
[27] | 周惦武,张健,徐少华,彭平,刘金水.MgH2-Nb体系解氢能力与电子结构的第一原理计算[J].化学学报,2010(10):955-960. |
[28] | Friedrichs O;Fernandez J R A;Lopez C C et al.[J].Journal of Physical Chemistry B,2006,110:7845. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%