在DSS法多晶硅生长中,为了降低氧碳含量,作者利用CGSim软件,分析了三种传统氩气导流系统的优缺点,以此为基础设计了一种中心和侧面双排气的新型导流系统,并对其进行了设计和数值模拟优化.模拟得出以下结论:多晶铸锭炉三种传统氩气导流系统中,石墨坩埚上部开大孔且有盖板时,有利于控制氧碳含量和固/液界面;新型多晶铸锭炉氩气导流系统中,中心氩气进口管伸入上盖板时,有利于降低多晶硅的氧碳含量;随着石墨坩埚上部开口高度h逐渐增大,中心出口氩气流速逐渐减小,侧面出口氩气流速增大,当h=20 mm时,有利于降低多晶硅的氧碳含量.研究结果为生长高质量的多晶硅提供了理论依据.
参考文献
[1] | 季尚司,左然,苏文佳,韩江山.石英坩埚表面涂层对铸造多晶硅生长中杂质传输的影响[J].人工晶体学报,2013(10):2177-2182. |
[2] | Ying-Yang Teng;Jyh-Chen Chen;Chung-Wei Lu;Hsueh-I Chen;Chuck Hsu;Chi-Yung Chen .Effects of the furnace pressure on oxygen and silicon oxide distributions during the growth of multicrystalline silicon ingots by the directional solidification process[J].Journal of Crystal Growth,2011(1):224-229. |
[3] | 娄中士,左然,苏文佳,杨琳.大晶粒多晶硅铸锭生长的热场设计与模拟[J].人工晶体学报,2011(06):1602-1606. |
[4] | Liu LJ;Nakano S;Kakimoto K .Dynamic simulation of temperature and iron distributions in a casting process for crystalline silicon solar cells with a global model[J].Journal of Crystal Growth,2006(2):515-518. |
[5] | Liu LJ;Nakano S;Kakimoto K .Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells[J].Journal of Crystal Growth,2008(7/9):2192-2197. |
[6] | R. Kvande;O. Mjos;B. Ryningen .Growth rate and impurity distribution in multicrystalline silicon for solar cells[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(0):545-549. |
[7] | 曾庆凯,关小军,潘忠奔,张怀金,王丽君,禹宝军,刘千千.φ400mm直拉硅单晶生长过程中氧浓度对微缺陷影响的数值模拟[J].人工晶体学报,2011(05):1150-1156. |
[8] | 苏文佳,左然,Vladimir Kalaev.单晶炉导流筒、热屏及炭毡对单晶硅生长影响的优化模拟[J].人工晶体学报,2010(02):524-528,544. |
[9] | Yang DR.;Ma XY.;Fan RX.;Que DL.;Moeller HJ.;Li LB. .Oxygen-related centers in multicrystalline silicon[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2000(1/2):37-42. |
[10] | A.A. Istratov;T. Buonassisi;M.D. Pickett .Control of metal impurities in "dirty" multicrystalline silicon for solar cells[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2006(2/3):282-286. |
[11] | Ying-Yang Teng;Jyh-Chen Chen;Chung-Wei Lu;Chi-Yung Chen.Numerical investigation of oxygen impurity distribution during multicrystalline silicon crystal growth using a gas flow guidance device[J].Journal of Crystal Growth,2012:12-17. |
[12] | Ying-Yang Teng;Jyh-Chen Chen;Bo-Siang Huang;Ching-Hsin Chang .Numerical simulation of impurity transport under the effect of a gas flow guidance device during the growth of multicrystalline silicon ingots by the directional solidification process[J].Journal of Crystal Growth,2014(Jan.1):1-8. |
[13] | B. Gao;S. Nakano;K. Kakimoto .Effect of crucible cover material on impurities of multicrystalline silicon in a unidirectional solidification furnace[J].Journal of Crystal Growth,2011(1):255-258. |
[14] | 李早阳,刘立军,马文成,余庆华,李凯.氩气流量对多晶硅定向凝固炉热场的影响[J].工程热物理学报,2012(01):143-145. |
[15] | Zaoyang Li;Lijun Liu;Wencheng Ma;Koichi Kakimoto .Effects of argon flow on heat transfer in a directional solidification process for silicon solar cells[J].Journal of Crystal Growth,2011(1):298-303. |
[16] | Lijun Liu;Satoshi Nakano;Koichi Kakimoto .Three-dimensional global modeling of a unidirectional solidification furnace with square crucibles[J].Journal of Crystal Growth,2007(1):165-169. |
[17] | Wei, Jiuan;Zhang, Hui;Zheng, Lili;Wang, Chenlei;Zhao, Bo .Modeling and improvement of silicon ingot directional solidification for industrial production systems[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2009(9):1531-1539. |
[18] | Wu B;Stoddard N;Ma RH;Clark R .Bulk multicrystalline silicon growth for photovoltaic (PV) application[J].Journal of Crystal Growth,2008(7/9):2178-2184. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%