欢迎登录材料期刊网

材料期刊网

高级检索

采用反复轧制工艺制备了超细晶TA1纯钛板。通过金相、透射电镜、 X射线衍射、扫描电镜等手段,分析了纯钛板在反复轧制过程中,不同的应变量所对应的组织形貌特点,并测试了强度、塑性,观察了宏观断口与微观形貌。结果表明:纯钛在常规轧机上经过反复轧制可显著细化晶粒,晶粒尺寸由轧制前的80μm降至120 nm;强度则随着轧制应变量的增加而提高,当Von Mises等效应变为2.4时,平均屈服强度提高到678 MPa,是轧制前粗晶的3倍多;位错及其交互作用是细化晶粒的主要机制,在高密度位错区域由于位错的交互作用而形成了位错胞和亚晶粒,最终演变成超细晶粒;细晶强化和加工硬化是导致纯钛轧制后强度显著提高的主要原因。

The microstructure , mechanical behaviors and fracture morphology of TA 1 pure titanium subjected to re-peated rolling have been investigated using optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction (XRD), tensile tests and scanning electron microscopy (SEM).The results show that the average grain size of commercially pure (CP) titanium decreased from 80 μm (before rolling) to 120 nm by repeated rolling.With the strains increasing , the strength of CP Ti increased .The average yield strength of CP Ti is 678 MPa, when the Von Mises strain is larger than 2.4, which is 3 times higher than that of coarse-grained titanium.The TEM results show that dislocation cells evolve into subgrains and then ultrafined grains which means that dislocation interaction dominates grain refinement of CP Ti during repeated rolling .The higher strength of ultrafined-grained titanium than coase-graine titanium results from grain refinement and strain hardening which is caused by severe plastic deformation during repeat -ed rolling .

参考文献

[1] Valiev R Z;Krasilnikov N A;Tsenev N K .Plastic deforma-tion of alloys with submicron-grained structure[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,1991,137:35-40.
[2] I. Sabirov;Y. Estrin;M.R. Barnett .Enhanced tensile ductility of an ultra-fine-grained aluminum alloy[J].Scripta materialia,2008(3):163-166.
[3] L. Jiang;M.T. Perez-Prado;P.A. Gruber .Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding[J].Acta materialia,2008(6):1228-1242.
[4] H.W. Hoppel;M. Kautz;C. Xu .An overview: Fatigue behaviour of ultrafine-grained metals and alloys[J].International Journal of Fatigue,2006(9):1001-1010.
[5] A. Balyanov;J. Kutnyakova;N. A. Amirkhanova;V. V. Stolyarov;R. Z. Valiev;X. Z. Liao;Y. H. Zhao;Y. B. Jiang;H. F. Xu;T. C. Lowe .Corrosion resistance of ultra fine-grained Ti[J].Scripta materialia,2004(3):225-229.
[6] Zhao, YH;Horita, Z;Langdon, TG;Zhu, YT .Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu-Zn alloys: Influence of stacking fault energy[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):342-347.
[7] Jiang H;Zhu Y T;Butt P P et al.Microstructural evolu-tion,microhardness and thermal stability of HPT-processed Cu[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2000,290(1/2):128-138.
[8] Naoki Takata;Seong-Hee Lee;Nobuhiro Tsuji .Ultrafine grained copper alloy sheets having both high strength and high electric conductivity[J].Materials Letters,2009(21):1794-1796.
[9] Naoya Kamikawa;Nobuhiro Tsuji;Xiaoxu Huang .Quantification of annealed microstructures in ARB processed aluminum[J].Acta materialia,2006(11):3055-3066.
[10] Terada D;Inoue S;Tsuji N .Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J].Journal of Materials Science,2007(5):1673-1681.
[11] G.P. Dinda;H. Rosner;G. Wilde .Synthesis of bulk nanostructured Ni, Ti and Zr by repeated cold-rolling[J].Scripta materialia,2005(7):577-582.
[12] D.K. Yang;P. Cizek;P.D. Hodgson;C.E. Wen .Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium[J].Acta materialia,2010(13):4536-4548.
[13] 张帆;周伟敏.材料性能学[M].上海:上海交通大学出版社,2009:101-108.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%