The tribological behaviors of polyetheretherketone (PEEK) composite reinforced by carbon fiber (CF) and potassium titanate whiskers (PTW) have been investigated using the pin-on-disk configuration at different applied loads under water lubricated condition. The effects of micrometer carbon fiber and sub-micrometer PTW on the wear properties of the hybrid composite have been discussed. It was found that the PEEK/PTW/CF composite showed excellent tribological performance in water condition. High wear resistance and low friction coefficient were achieved under a wide range of loads. It was revealed that the two fillers worked synergetically to enhance the wear resistance of the hybrid reinforced PEEK composite. The carbon fiber carried the main load between the contact surfaces and protected the matrix from further severe abrasion of the counterpart. At the same time, the exposed PTW out of the polymer matrix around the fiber inhibited the direct scraping between the fiber edge and counterpart tip in some degree, so that the fibers could be less directly impacted during the subsequent sliding process and they were protected from severe damage. In addition, the reinforcement effect of PTW on PEEK could reduce the stress concentration on the carbon fiber-matrix interface, and thereby reduce the CF failure/damage. The reinforcement effect of PTW on PEEK might also restrict the crack initiation and propagation on the surface and subsurface of the composite, and therefore to protect the matrix from fatigue failure during the sliding process. (C) 2011 Elsevier Ltd. All rights reserved.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%