本文用非平衡热力学耦合模型计算了常压乙炔火焰生长金刚石的相图,从理论上得到金刚石生长合适的衬底温度及气体流量比条件.不同衬底温度下氧气与乙炔流量比的范围是不同的.实验中通常的衬底温度在1000~1250K之间,此时合适的流量比范围应为0.8~1.1.衬底温度太低,不论流量比为何值,都不能生长金刚石.不同气体流量比时,衬底温度的范围也不相同,当流量比接近于1时,衬底温度的范围最宽;流量比偏离1时,衬底温度的范围将迅速变窄.本文从理论上得到的生长条件与报道的实验结果基本相符,因而可用于指导乙炔火焰生长金刚石的实验研究.
The phase diagram of diamond deposition in atmosphere oxyacetylene flames was calculated according to our non-equilibrium thermodynamic coupling model, and the ranges of substrate temperature and gas flow ratio for diamond growth were obtained theoretically. The suitable range of gas flow ratio (R) is dependent on substrate temperature (T). Since substrate temperatures between 1000K and 1250K are usually used for diamond growth in oxyacetylene flames, the suitable range of flow ratio of oxygen to acctylene will be lying between 0.8 and 1.1. Diamond can not be synthesized for any R value when substrate temperature is too low. The suitable range of substrate temperature for diamond growth is also dependent on gas flow ratio of oxygen to acetylene. The temperature range is widest for R value close to unity, and the range will be narrowed rapidly when R value deviates from unity. The diamond growth conditions obtained in the paper are consistent with many reported perimental
results, and favour experimental designs for diamond deposition in oxyacetylene flames.
参考文献
[1] | Hirose Y, Amanuma S. J. Appl. Phys., 1990, 68 (12): 6401. 2 Hirose Y, Mitsuizumi M. New Diamond, 1988, 4 (3): 34. 3 Hanssen L M, Carrington W A, Butler J E, et al. Materials Letters, 1988, 7: 289. 4 Kosky P G, Mcatee D S. Materials Letters, 1989, 8 (9): 369. 5 Weimer R A, Thorpe T P, Snail K A. J. Appl. Phys., 1995, 77 (2): 641. 6 Snail K A, Hanssen L M. J. Crystal Growth, 1991, 112: 651. 7 王季陶, 郑培菊. 科学通报, 1995, 40: 1056. 8 Wang J T, Zhang P J, Yang Q H, et al. In: K. V. Ravi, J. P. Dismukes, ed. Diamond Materials Ⅳ. Pennington, New Jersey: The Electrochem. Soc, Inc., May 1995. 13. 9 张卫, 万永中, 王季陶. 无机材料学报, 1997, 12 (3): 331. 10 Bang K, Ghgjar A J, Komanduri R. Thin Solid Film, 1994, 238: 172. 11 Glumac N G, Goodwin D G. Thin Solid Film, 1992, 212: 122. 12 Snail K A, Vardiman R G, Glesener J W, et al. J. Appl. Phys., 1993, 74: 7561. 13 Hanssen L M, Snail K A, Carrington W A, et al. Thin Solid Films, 1991, 196: 271. 14 Philips R, Wei J, Tzeng Y. Thin Solid Films, 1992, 212: 30. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%