采用相对论平均场方法研究了致密物质的性质,构造了包括较宽温度、同位旋不对称度和密度范围的适用于超新星模拟研究的状态方程,均匀物质由相对论平均场理论描述,非均匀物质由托马斯-费米近似给出。讨论了包含超子自由度的中子星物质的状态方程。计算结果表明,包含超子可以有效地软化高密度区的状态方程,Λ超子的超流态有可能存在于大质量中子星内部。
The properties of dense matter are studied within the relativistic mean-field theory. The equation of state (EOS) of dense matter are constructed covering a wide range of temperature, proton fraction, and density for the use of supernova simulations. The relativistic mean-field theo- ry is employed to describe the uniform matter, while the Thomas-Fermi approximation is adopted to describe the non-uniform matter. The EOS of neutron star matter is discussed with the inclu- sion of hyperons. It is found that the EOS at high density can be significantly softened by the in- clusion of hyperons. The 1S0 superfluidity of A hyperons may exist in massive neutron stars.
参考文献
[1] | WEBER F. Prog Part Nucl Phys, 2005, 54- 193. |
[2] | LATTIMER J M, PRAKASH M. Phys Rep, 2007, 442- 109. |
[3] | JANKA H-Th, LANGANKE K, MAREK A, et al. Phys Rep, 2007, 442: 38. |
[4] | SUMIYOSHI K, YAMADA S, SUZUKI H, et al. Astro phys J, 2005, 629- 922. |
[5] | LATTIMER J M, SWESTY F D. Nucl Phys A, 1991, 535: 331. |
[6] | SHEN H, TOKI H, OYAMATSU K, et al. Prog Theor Phys, 1998, 100: 1013. |
[7] | SHEN G, HOROWITZ C J, TEIGE S. Phys Rev C, 2010, 82- 015806. |
[8] | SEROT B D, WALECKAa J D. Adv Nucl Phys, 1986, 16: 1. |
[9] | HIRATA D, SUMIYOSHI K, CARLSON B V, etal. Nucl Phys A, 1996, 609: 131. |
[10] | MA Z Y, VAN G N, TOKI H, etal. Phys Rev C, 1997, 55 : 2385. |
[11] | REN Z Z, TAI F, CHEN D H. Phys RevC, 2002, 66: 064306. |
[12] | MENGJ, TOKIH, ZHOUSG, etal. ProgPartNuclPhys, 2006, 57- 470. |
[13] | 李俊,沈刚,HILLOUSEGC,等.原子核物理评论,2005,22(1):27. |
[14] | BAN Shufang, LI Jun, ZHANG Shuangquan, et al. Nuclear Physics Review, 2005, 22(1): 29. |
[15] | SUGAHARAY, TOKI H. NuclPhysA, 1994, 579: 557. |
[16] | OYAMATSUK. NuclPhysA, 1993, 561: 431. |
[17] | SHEN H, TOKI H, OYAMATSU K, et al. Nucl Phys A, 1998, 637: 435. |
[18] | SHEN H, TOKI H, OYAMATSU K, et al. Astrophys J, 2011, 197(Suppl. 1): 20. |
[19] | ISHIZUKA C, OHNISHI A, TSUBAKIHARA K, et al. JPhys G, 2008, 35- 085201. |
[20] | NAKAZATO K, SUMIYOSHI K, YAMADA S. Phys Rev D, 2008, 77- 103006. |
[21] | SAGERT I, FISCHER T, HEMPEL M, et al. Phys Rev Lett, 2009, 102: 081101. |
[22] | SHEN H. Phys RevC, 2002 65: 035802. |
[23] | SHEN H, YANG F, TOKI H. Prog Theor Phys, 2006, 115 : 325. |
[24] | NAKAZAWA K, KEK-E176 Collaborators, E373 Collabora- tors, etal. Nucl Phys A, 2010, 835: 207. |
[25] | WANGYN, SHEN H. PhysRevC, 2010, 81: 025801. |
[26] | HUANG M, ZHUANG P F, CHAO W Q. Phys Rev D, 2003, 67: 065015. |
[27] | YANGF, SHEN H. PhysRevC, 2008, 77: 025801. |
[28] | DEMOREST P B, PENNUCCI T, RANSOM S M, et al. Nature, 2010, 467: 1081. |
[29] | LATTIMER J M, PRAKASH M. arXiv: astro ph/1012. 3208, 2010. |
[30] | OGAWA Y, TOKI H, TAMENAGA S. Phys Rev C, 2006, 73- 034301. |
[31] | LONGW H, SAGAWAH, VANG N, etal. Phys RevC, 2007, 76- 034314. |
[32] | HIYAMA E, KAMIMURA M, MOTOBA T, et al. Prog Theor Phys, 1997, 97- 881. |
[33] | FILIKHININ, GALA. NuclPhysA, 2002, 707: 491. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%