欢迎登录材料期刊网

材料期刊网

高级检索

采用相对论平均场方法研究了致密物质的性质,构造了包括较宽温度、同位旋不对称度和密度范围的适用于超新星模拟研究的状态方程,均匀物质由相对论平均场理论描述,非均匀物质由托马斯-费米近似给出。讨论了包含超子自由度的中子星物质的状态方程。计算结果表明,包含超子可以有效地软化高密度区的状态方程,Λ超子的超流态有可能存在于大质量中子星内部。

The properties of dense matter are studied within the relativistic mean-field theory. The equation of state (EOS) of dense matter are constructed covering a wide range of temperature, proton fraction, and density for the use of supernova simulations. The relativistic mean-field theo- ry is employed to describe the uniform matter, while the Thomas-Fermi approximation is adopted to describe the non-uniform matter. The EOS of neutron star matter is discussed with the inclu- sion of hyperons. It is found that the EOS at high density can be significantly softened by the in- clusion of hyperons. The 1S0 superfluidity of A hyperons may exist in massive neutron stars.

参考文献

[1] WEBER F. Prog Part Nucl Phys, 2005, 54- 193.
[2] LATTIMER J M, PRAKASH M. Phys Rep, 2007, 442- 109.
[3] JANKA H-Th, LANGANKE K, MAREK A, et al. Phys Rep, 2007, 442: 38.
[4] SUMIYOSHI K, YAMADA S, SUZUKI H, et al. Astro phys J, 2005, 629- 922.
[5] LATTIMER J M, SWESTY F D. Nucl Phys A, 1991, 535: 331.
[6] SHEN H, TOKI H, OYAMATSU K, et al. Prog Theor Phys, 1998, 100: 1013.
[7] SHEN G, HOROWITZ C J, TEIGE S. Phys Rev C, 2010, 82- 015806.
[8] SEROT B D, WALECKAa J D. Adv Nucl Phys, 1986, 16: 1.
[9] HIRATA D, SUMIYOSHI K, CARLSON B V, etal. Nucl Phys A, 1996, 609: 131.
[10] MA Z Y, VAN G N, TOKI H, etal. Phys Rev C, 1997, 55 : 2385.
[11] REN Z Z, TAI F, CHEN D H. Phys RevC, 2002, 66: 064306.
[12] MENGJ, TOKIH, ZHOUSG, etal. ProgPartNuclPhys, 2006, 57- 470.
[13] 李俊,沈刚,HILLOUSEGC,等.原子核物理评论,2005,22(1):27.
[14] BAN Shufang, LI Jun, ZHANG Shuangquan, et al. Nuclear Physics Review, 2005, 22(1): 29.
[15] SUGAHARAY, TOKI H. NuclPhysA, 1994, 579: 557.
[16] OYAMATSUK. NuclPhysA, 1993, 561: 431.
[17] SHEN H, TOKI H, OYAMATSU K, et al. Nucl Phys A, 1998, 637: 435.
[18] SHEN H, TOKI H, OYAMATSU K, et al. Astrophys J, 2011, 197(Suppl. 1): 20.
[19] ISHIZUKA C, OHNISHI A, TSUBAKIHARA K, et al. JPhys G, 2008, 35- 085201.
[20] NAKAZATO K, SUMIYOSHI K, YAMADA S. Phys Rev D, 2008, 77- 103006.
[21] SAGERT I, FISCHER T, HEMPEL M, et al. Phys Rev Lett, 2009, 102: 081101.
[22] SHEN H. Phys RevC, 2002 65: 035802.
[23] SHEN H, YANG F, TOKI H. Prog Theor Phys, 2006, 115 : 325.
[24] NAKAZAWA K, KEK-E176 Collaborators, E373 Collabora- tors, etal. Nucl Phys A, 2010, 835: 207.
[25] WANGYN, SHEN H. PhysRevC, 2010, 81: 025801.
[26] HUANG M, ZHUANG P F, CHAO W Q. Phys Rev D, 2003, 67: 065015.
[27] YANGF, SHEN H. PhysRevC, 2008, 77: 025801.
[28] DEMOREST P B, PENNUCCI T, RANSOM S M, et al. Nature, 2010, 467: 1081.
[29] LATTIMER J M, PRAKASH M. arXiv: astro ph/1012. 3208, 2010.
[30] OGAWA Y, TOKI H, TAMENAGA S. Phys Rev C, 2006, 73- 034301.
[31] LONGW H, SAGAWAH, VANG N, etal. Phys RevC, 2007, 76- 034314.
[32] HIYAMA E, KAMIMURA M, MOTOBA T, et al. Prog Theor Phys, 1997, 97- 881.
[33] FILIKHININ, GALA. NuclPhysA, 2002, 707: 491.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%