{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用熔融复合法制备聚丙烯/微晶纤维素复合材料,用DSC法研究其非等温结晶行为,分别用Jeziorny法、Ozawa法和Mo法对所得的数据进行处理.结果表明,Jeziorny法和Mo法处理非等温结晶过程比较理想,MCC的加入缩短了t1/2,起到了异相成核作用.","authors":[{"authorName":"孙晓玉","id":"bd1599aa-ee57-418d-a71e-a6b9d766a9c8","originalAuthorName":"孙晓玉"},{"authorName":"王华平","id":"b1f5fb6b-bcfc-45c2-895e-4cecbdae9f4f","originalAuthorName":"王华平"},{"authorName":"方正然","id":"3f610fd4-93ed-4ff1-8eb6-281d2b6c4c5a","originalAuthorName":"方正然"},{"authorName":"陈仕艳","id":"82af6647-a23f-49ed-8857-6f2196b23589","originalAuthorName":"陈仕艳"},{"authorName":"王朝生","id":"2dbd9fe7-5138-4b47-b623-681c658d2196","originalAuthorName":"王朝生"},{"authorName":"张玉梅","id":"34cdd859-e749-4892-93d4-65f19b9d93b8","originalAuthorName":"张玉梅"},{"authorName":"王彪","id":"585087c1-3b1c-4d70-98aa-98f50664e827","originalAuthorName":"王彪"}],"doi":"","fpage":"278","id":"f580f67a-4b22-4d43-bf94-78c90883782f","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a719c1d1-aa25-416f-aaf4-405a004df8f7","keyword":"聚丙烯/微晶纤维素复合材料","originalKeyword":"聚丙烯/微晶纤维素复合材料"},{"id":"1efa01f0-f183-42e3-9244-fb771c8678c5","keyword":"差示扫描量热法","originalKeyword":"差示扫描量热法"},{"id":"951450d7-3ef8-493d-a726-8d672bf9a5f3","keyword":"非等温结晶","originalKeyword":"非等温结晶"},{"id":"87bcbe9e-1e23-4c5e-9041-8b0b6ea372a2","keyword":"结晶速率","originalKeyword":"结晶速率"}],"language":"zh","publisherId":"cldb2006z2081","title":"聚丙烯/微晶纤维素复合材料的非等温结晶动力学研究","volume":"20","year":"2006"},{"abstractinfo":"以细菌纤维素(BC)基体材料,通过共沉淀原位复合法制备纳米钴铁氧体(CoFe2 O4)/细菌纤维素磁性复合膜;并在此基础上,通过原位化学氧化聚合法,制备了聚吡咯/钴铁氧体/细菌纤维素(PPy/CoFe2 O4/BC)复合膜,对其结构性能及应用进行研究。结果表明,PPy/CoFe2 O4/BC复合膜仍然保持了 BC的三维网状结构。当吡咯单体浓度为0.07 mol/L时,复合膜由连续的核壳结构构成,电导率稳定在0.4 S/cm 左右,其电磁屏蔽效能在25 dB左右,是一种良好的民用或商用电磁屏蔽材料。","authors":[{"authorName":"韩谨潞","id":"eaa83543-cf5b-4d7d-9714-2f4fcb000d8f","originalAuthorName":"韩谨潞"},{"authorName":"李琪琪","id":"c3b477de-f8e4-4d59-aef3-c585bf9e59ae","originalAuthorName":"李琪琪"},{"authorName":"汤廉","id":"7f9544d7-bafc-4051-930f-fc1fbf707ea2","originalAuthorName":"汤廉"},{"authorName":"陈仕艳","id":"7432cd67-7553-427c-91c3-ff486aa5228b","originalAuthorName":"陈仕艳"},{"authorName":"王华平","id":"ac0ba6a4-3127-43c5-a190-4a3efc04c703","originalAuthorName":"王华平"}],"doi":"10.3969/j.issn.1001-9731.2015.14.016","fpage":"14083","id":"0519d31e-a2e6-4022-a410-d13ff69eb793","issue":"14","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"122df741-03fb-4abc-9c08-d936a531237c","keyword":"细菌纤维素","originalKeyword":"细菌纤维素"},{"id":"5bec7948-17d8-42fb-bd05-f0aac02bf1a7","keyword":"钴铁氧体","originalKeyword":"钴铁氧体"},{"id":"19f6f749-df0b-42e1-a78c-50c78b21f244","keyword":"聚吡咯","originalKeyword":"聚吡咯"}],"language":"zh","publisherId":"gncl201514016","title":"细菌纤维素基电磁功能复合膜的制备与性能研究?","volume":"","year":"2015"},{"abstractinfo":"研究了不同性质的纤维素酶对细菌纤维素(BC)的降解活性,着重探讨了在纤维素酶作用下,影响BC在模拟人体环境中降解行为的因素.研究表明中性纤维素酶在模拟人体环境的条件下对BC具有较高的降解活性.纤维素酶在模拟体液中的活性会随着时间延长而降低,但并未丧失活性,纤维素酶在模拟人体的环境下依然具有长期降解BC的作用.β-葡糖苷酶对BC的降解有很大的促进作用,当β-葡萄糖苷酶在复合酶中质量分数为60%时,复合酶降解BC膜的速率达到最大.","authors":[{"authorName":"孙晓晓","id":"43141c9c-f908-4631-8ddb-04d61a3912a6","originalAuthorName":"孙晓晓"},{"authorName":"王华平","id":"937eff1d-f54a-4e6c-ac2d-113375b1eb17","originalAuthorName":"王华平"},{"authorName":"杨敬轩","id":"7dd742a9-917b-429c-829e-0ecc04a2b65f","originalAuthorName":"杨敬轩"},{"authorName":"李喆","id":"58b9efb7-55ec-4a68-901f-9cc5b0f982a8","originalAuthorName":"李喆"},{"authorName":"陈仕艳","id":"4b5c09e0-efb9-4ae3-98a9-698c07b1f921","originalAuthorName":"陈仕艳"},{"authorName":"徐月敏","id":"8e0be74c-c48a-40d3-af24-b62f9d086047","originalAuthorName":"徐月敏"}],"doi":"10.11896/j.issn.1005-023X.2014.24.007","fpage":"26","id":"318a9e2a-68d4-46c0-a851-c9578d4599e8","issue":"24","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"42a3ccad-3ddf-4c33-9f30-249c034fb3b7","keyword":"纤维素酶","originalKeyword":"纤维素酶"},{"id":"30407a07-e20a-4e7b-a089-ed401d3b58f3","keyword":"细菌纤维素","originalKeyword":"细菌纤维素"},{"id":"8405a3d6-cba3-4681-8b94-7c65c78fb073","keyword":"β-葡糖苷酶","originalKeyword":"β-葡糖苷酶"},{"id":"c893ca38-3eaf-4ed3-85f1-07688894aa0c","keyword":"酶水解","originalKeyword":"酶水解"}],"language":"zh","publisherId":"cldb201424007","title":"细菌纤维素在模拟体液中的降解研究","volume":"28","year":"2014"},{"abstractinfo":"细菌纤维素(Bacterial cellulose,BC)是一种兼具生物相容性与生物可降解性的天然高分子材料,具备优异的理化性质:高持水性、高纤维素纯度以及良好的湿态柔韧性等。静态发酵阶段原位添加透明质酸(Hyaluronic acid,HA)制得 HA-BC 生物面膜,该面膜呈现“上致密、下疏松”的双层结构,较 BC 和无纺布面膜更贴合人体皮肤结构;其拉伸强度为(1.00±0.17)MPa,弹性模量为(4.90±0.86)MPa,在一定拉扯力下不易变形,能保有其孔洞结构,抗拉力较无纺布面膜好,保证了使用者体验度;实验所制面膜90°剥离强度为(0.76±0.14)N/m,远高于无纺布面膜,面膜手感更柔软,贴肤度更强;HA-BC 生物面膜水蒸气透过率为(5640±78)g·m-2·(24 h)-1,较未改性 BC面膜减少约2842 g·m-2·(24 h)-1,较无纺布面膜减少约6468 g·m-2·(24 h)-1,锁水力更强。HA-BC 生物面膜较 BC、无纺布面膜性能更为优异。","authors":[{"authorName":"王蕾","id":"b5b5532e-0145-4633-9d59-aa8df6e3bc97","originalAuthorName":"王蕾"},{"authorName":"吴旭君","id":"64529fac-3acb-4b52-9b98-a617cf51803a","originalAuthorName":"吴旭君"},{"authorName":"陈仕艳","id":"0eb425f4-0745-4a71-97a9-7152d12c8242","originalAuthorName":"陈仕艳"},{"authorName":"王华平","id":"1d0a2c94-d09a-4643-abca-075c24ccb4c1","originalAuthorName":"王华平"}],"doi":"10.11896/j.issn.1005-023X.2015.12.010","fpage":"43","id":"36568c7c-1a97-413b-9bba-136e74b6f8c5","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"fe732cb5-4dbe-4a16-ab7b-61935c613e10","keyword":"生物面膜","originalKeyword":"生物面膜"},{"id":"4f803f13-c854-41e0-9c08-89daa3b52194","keyword":"亲肤性","originalKeyword":"亲肤性"},{"id":"ac3b9fd3-2a9f-4ca7-8b0a-41ec3a50941a","keyword":"保湿能力","originalKeyword":"保湿能力"}],"language":"zh","publisherId":"cldb201512010","title":"原位添加静态发酵制备透明质酸-细菌纤维素生物面膜?","volume":"","year":"2015"},{"abstractinfo":"由于离子液体对于纤维素具有很好的溶解性能,以及离子液体本身所具有的热稳定性好、蒸气压低、不燃烧等优良性质,近几年以离子液体为溶剂制备纤维素衍生物的研究受到了越来越多的重视.综述了近期以离子液体为溶剂制备纤维素衍生物的研究进展,包括在离子液体中制备纤维素醋酸酯、琥珀酸纤维素、羧甲基纤维素等衍生化反应的特点,以及与传统制备方法的优劣对比等内容.","authors":[{"authorName":"陈珣","id":"2a165661-32d3-479b-ba6c-85e1233363f4","originalAuthorName":"陈珣"},{"authorName":"程凌燕","id":"c70db619-d1e6-45d2-b9a3-0b3420b2818c","originalAuthorName":"程凌燕"},{"authorName":"张玉梅","id":"4b99ae71-d115-4bc5-9b61-ec6ba06da71a","originalAuthorName":"张玉梅"},{"authorName":"刘崴崴","id":"637a0c3b-d493-48ff-bbc6-ae2eb5ebf3a3","originalAuthorName":"刘崴崴"},{"authorName":"王华平","id":"06538874-7c79-4045-9f26-73b33c4780a0","originalAuthorName":"王华平"}],"doi":"","fpage":"56","id":"406ded59-7052-4c41-8b1a-7e639965a7e9","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0476998b-f4a0-46ed-a797-c7783ff1522f","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"aa7d87bb-8a36-4f79-9455-688e98ffd0aa","keyword":"纤维素","originalKeyword":"纤维素"},{"id":"14ed04e6-5268-4027-b032-2508dfd0114b","keyword":"衍生化","originalKeyword":"衍生化"},{"id":"34df42a1-154b-468b-9b4d-a07ed035a139","keyword":"均相反应","originalKeyword":"均相反应"}],"language":"zh","publisherId":"cldb200712014","title":"以离子液体为反应介质制备纤维素衍生物的研究进展","volume":"21","year":"2007"},{"abstractinfo":"为了提高细菌纤维素(BC)表面羟基的反应活性,分别采用超声波、碱溶胀和乙醇溶剂交换进行表面预处理,探讨预处理对其表面特性及结晶结构的影响,并研究预处理膜对Zn2+吸附动力学的影响.结果表明,碱溶胀后BC逐渐由纤维素Ⅰ晶型转变成纤维素Ⅱ晶型,生成的碱纤维素有利于金属离子吸附;乙醇溶剂交换和超声波处理并不改变BC晶型.与原膜相比,预处理膜吸附性能明显改善,对Zn2+的吸附动力学符合二级动力学方程和颗粒内扩散方程.","authors":[{"authorName":"周碧辉","id":"f700f945-d62f-46d4-93ff-08ad2a4fdc1e","originalAuthorName":"周碧辉"},{"authorName":"陈仕艳","id":"a1912f4c-e2e4-4e86-970f-8be2e9ce58d8","originalAuthorName":"陈仕艳"},{"authorName":"胡伟立","id":"ad78efdf-e6b0-459c-9132-fc4712aa5302","originalAuthorName":"胡伟立"},{"authorName":"王华平","id":"873c7919-89d2-49b9-ab60-4c60e53c5168","originalAuthorName":"王华平"}],"doi":"","fpage":"66","id":"49f10d7b-7f69-40f6-b9ba-5b0fbf35ad08","issue":"16","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ff5760e6-e30a-4a4d-9765-69bf9c4694dd","keyword":"细菌纤维素","originalKeyword":"细菌纤维素"},{"id":"ad50e856-1b1e-414d-a8ae-5956588ce591","keyword":"表面预处理","originalKeyword":"表面预处理"},{"id":"b7af1bab-c246-4e11-a63c-4a0b62201893","keyword":"锌离子吸附","originalKeyword":"锌离子吸附"},{"id":"858e3b0e-a898-4bd7-8f66-aa469b41cf44","keyword":"结晶结构","originalKeyword":"结晶结构"}],"language":"zh","publisherId":"cldb201216017","title":"表面预处理对细菌纤维素吸附性能的影响","volume":"26","year":"2012"},{"abstractinfo":"对碳纳米管/高聚物复合材料纤维的研究是近几年的研究热点.论述了碳纳米管/高聚物复合材料纤维的各种制备方法和最新进展,并展望了今后的研究方向.","authors":[{"authorName":"倪文晶","id":"d34c6f9a-9ed9-4edf-bec3-b43083945f10","originalAuthorName":"倪文晶"},{"authorName":"王彪","id":"2d3daf01-c574-45eb-8074-a270872a1426","originalAuthorName":"王彪"},{"authorName":"王华平","id":"9b0ea8e1-1de5-47ae-86f7-258c37642e57","originalAuthorName":"王华平"},{"authorName":"张玉梅","id":"c5eea1ab-e92d-4b28-8154-911239f0a0ea","originalAuthorName":"张玉梅"}],"doi":"","fpage":"184","id":"5d70050e-7cd6-4039-ab21-887c3473bcff","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5b4fc302-7a1c-41fd-9513-da3c1c0bed88","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"add2aa72-0fdf-47c8-be29-176df0bb3316","keyword":"纤维","originalKeyword":"纤维"},{"id":"b69faeb2-5607-4734-9533-629e54438c5d","keyword":"聚合物","originalKeyword":"聚合物"}],"language":"zh","publisherId":"cldb2005z2059","title":"碳纳米管/高聚物复合材料纤维的研究进展","volume":"19","year":"2005"},{"abstractinfo":"将碳纤维的数字化加工优化问题按阶段划分为若干多目标决策子问题.以其中的拉伸过程为例,按拉伸的时间顺序将其划分为6个阶段,以原丝线密度、强度和断裂伸长率为优化目标,提出了一种碳纤维拉伸工艺优化的多目标动态规划方法.以实验数据为基础,拟合出产品性能与生产工艺的关系.采用专家打分,确定各拉伸阶段的权重,合理分配拉伸比.","authors":[{"authorName":"陈佳佳","id":"41ddfda3-0b55-4bf2-9b5b-89d5e58c54e3","originalAuthorName":"陈佳佳"},{"authorName":"丁永生","id":"ae07317a-73ec-428e-a137-b7f3ab346f02","originalAuthorName":"丁永生"},{"authorName":"梁霄","id":"2572c731-54e9-404a-abce-74ab827487ec","originalAuthorName":"梁霄"},{"authorName":"郝矿荣","id":"0f0416d2-77fe-4450-8d8c-a947b1109540","originalAuthorName":"郝矿荣"},{"authorName":"王华平","id":"ca4f3d09-62ec-4b73-9987-c08aa3a588b8","originalAuthorName":"王华平"}],"doi":"","fpage":"127","id":"75817511-9c6e-484b-aed9-9fa5fd13841f","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0edf01a0-e58a-4889-b860-85df01c1214c","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"80b808ac-e115-4506-a79a-01fdf4f48700","keyword":"拉伸工艺","originalKeyword":"拉伸工艺"},{"id":"1576c733-9c71-4dea-9fd5-495ffce8c549","keyword":"动态规划","originalKeyword":"动态规划"},{"id":"8be3c313-a848-41f3-87b4-c112e9292a93","keyword":"多目标优化","originalKeyword":"多目标优化"}],"language":"zh","publisherId":"cldb201106034","title":"碳纤维拉伸工艺优化的多目标动态规划方法","volume":"25","year":"2011"},{"abstractinfo":"碳纳米管的化学修饰是纳米材料领域的一个重要研究方向.从有机化学修饰和无机化学修饰2个方面评述了碳纳米管化学修饰的发展过程和最新进展,讨论了碳纳米管化学修饰的方法及其对碳纳米管结构性能的影响,并对今后的研究方向进行了展望.","authors":[{"authorName":"王彪","id":"ba5957d4-d6af-48d7-bf1a-6d253b40ab4a","originalAuthorName":"王彪"},{"authorName":"孙颖","id":"c343730c-d849-46b9-b5de-bb6bedcd6bdd","originalAuthorName":"孙颖"},{"authorName":"王华平","id":"10ef2c9c-16ef-404c-be0e-aaf215666f5e","originalAuthorName":"王华平"},{"authorName":"张玉梅","id":"5ca42607-b738-4042-98ee-499a285d46e2","originalAuthorName":"张玉梅"}],"doi":"","fpage":"106","id":"8c4f0f14-165c-42ca-aa99-0561826c93d4","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0604e4d2-bf23-4599-bc77-5c21b6a02f2c","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"055da14f-9cad-4d34-80a5-c354e8a7dc7a","keyword":"化学修饰","originalKeyword":"化学修饰"},{"id":"55cc2312-4a46-4fe7-bf08-b191b857ef4b","keyword":"官能化","originalKeyword":"官能化"}],"language":"zh","publisherId":"cldb2004z2032","title":"碳纳米管的化学修饰","volume":"18","year":"2004"},{"abstractinfo":"综合介绍了磁性复合微球的研究进展及目前常用的制备磁性复合微球的方法,总结了各种制备方法的优缺点和适用范围,并着重介绍了单体聚合法,最后展望了磁性复合微球的发展趋势.","authors":[{"authorName":"孙颖","id":"41dbe874-c03e-40d0-a7e5-09cfe422fbeb","originalAuthorName":"孙颖"},{"authorName":"惠春","id":"7a5f82ee-8fed-4840-9204-1ca07dfcda47","originalAuthorName":"惠春"},{"authorName":"王彪","id":"03268681-d309-4be4-8e46-b33e85801da3","originalAuthorName":"王彪"},{"authorName":"王华平","id":"9a51cb8b-0590-4d72-8919-05c1ca07bfd5","originalAuthorName":"王华平"},{"authorName":"张玉梅","id":"9a8723dc-8607-4fb8-949a-fc7e2e7306b3","originalAuthorName":"张玉梅"},{"authorName":"江建明","id":"991a74bc-cb4e-4a34-8956-324a369d9af9","originalAuthorName":"江建明"}],"doi":"","fpage":"17","id":"95339342-6820-49a9-8ba2-669c2ad4c9d2","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"80866a03-bbe5-49ce-b336-c3ed436cc1b4","keyword":"磁性复合微球","originalKeyword":"磁性复合微球"},{"id":"a97c89e4-4930-4bf7-b695-ddb9ef0c494c","keyword":"制备","originalKeyword":"制备"},{"id":"6881aa67-f905-4e1a-86e1-bda0ed383854","keyword":"单体聚合","originalKeyword":"单体聚合"}],"language":"zh","publisherId":"cldb200512005","title":"磁性高分子复合微球的研究进展","volume":"19","year":"2005"}],"totalpage":79,"totalrecord":782}