本文提出了格子-Boltzmann方法的一种新的插值算法,使得网格划分与微观粒子运动方向相分离;用该方法模拟了后台阶通道内的突扩流动和二维极坐标下的空腔流.所得结果与传统方法吻合良好,证明了该方法的可行性.
参考文献
[1] | 李明秀,陶文铨,王秋旺.LATTICE-BOLTZMANN方法及其在顶盖驱动流数值模拟中的应用[J].工程热物理学报,2001(02):223-225. |
[2] | 李明秀;王秋旺;何雅玲 等.用格子-BOLTZMANN方法求解方腔自然对流[J].东北大学学报(自然科学版),2001,22(z1):45-48. |
[3] | Xi HW.;Chou SH.;Peng GW. .Finite-volume lattice Boltzmann method[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1999(5 Pt.b):6202-6205. |
[4] | Renwei Mei;Wei Shyy .On the Finite Difference-based Lattice Boltzmann Method in Curvilinear Coordinates[J].Journal of Computational Physics,1998,143:426-448. |
[5] | Xiaoyi He;Gary Doolen .Lattice Boltzmann Method on Curvilinear Coordinates System: Flow Around a Circular Cylinder[J].Journal of Computational Physics,1997,134:306-315. |
[6] | 陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:232-237. |
[7] | R M Fearn;T Mullin;K A Cliffe .Nonlinear Flow Phenomena in Symmetric Sudden Expansion[J].Journal of Fluid Mechanics,1990,211:595. |
[8] | L Fuchs;N Tillmark .Numerical and Experimental Study of Driven Flow in a Polar Cavity[J].International Journal for Numerical Methods in Fluids,1985,5:311-329. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%