欢迎登录材料期刊网

材料期刊网

高级检索

提出了一种分析横观各向同性纤维增强复合材料轴对称界面端的奇异应力场的特征值法. 基于横观各向同性弹性材料空间轴对称问题的基本方程和一阶近似假设, 利用分离变量形式的位移函数和无网格算法, 导出了关于应力奇异性指数和应力角函数的奇异性特征方程. 对于纤维/基体轴对称界面端模型, 特征值法给出的应力奇异性指数、相应的位移和应力角函数, 与通过有限元分析得到的结果非常吻合. 利用有限元计算得到的奇异应力场, 结合特征值法给出的应力奇异性指数和应力角函数, 通过线性外插得到了相应的应力强度系数. 特征值法结合有限元分析, 可以完全确定横观各向同性纤维增强复合材料轴对称界面端的奇异应力场.

An eigenvalue method was proposed to study the singular stress field at the axisymmetric interface wedge of the fiber reinforced composites. Based on the fundamental equations of the spacial axisymmetric problem of the transversely isotropic materials and the first-order approximation assumption, a discrete characteristic equation was derived by using the displacement functions with separated variables and the meshless method. The eigenvalue was related to the order of stress singularity, and the associated eigenvector was with respect to the stress angular variations. The fiber/matrix axisymmetric interface wedge model was used to verify the validity of the proposed eigenvalue method. The order of stress singularity, the associated displacement and stress angular variations obtained by this eigenvalue method are in good agreement with those by the finite element method(FEM). Based on the order of stress singularity and the associated stress angular variations determined by the eigenvalue analysis, as well as the numerical results of singular stress fields by FEM, the stress intensity coefficient was also obtained in terms of the linear extropolation. The singular stress field around the axisymmetric interface wedge can be completely determined by the developed eigenvalue method coupling with the FEM analysis.

参考文献

[1] 康国政,高庆.短纤维增强金属基复合材料基体中的应力分布及其变形特征[J].复合材料学报,2000,17(2):20-24.Kang Guozheng,Gao Qing.Stress distribution and deformation characteristics of matrix in short fiber reinforced metal matrix composites[J].Acta Materiae Compositae Sinica,2000,17(2):20-24.
[2] 贾普荣,矫桂琼.纤维/基体界面应力分析及界面失效[J].复合材料学报,1999,16(3):93-97.Jia Purong,Jiao Guiqiong.Stress analyses of fiber-matrix interface and interface failure[J].Acta Materiae Compositae Sinica,1999,16(3):93-97.
[3] Ji X,Dai Y,Zheng B L,Ye L,Mai Y W.Interface theory and re-evaluation in interfacial strength test methods[J].Composite Interfaces,2003,10(6):567-580.
[4] Dai Y,Ji X,Ye L,Mai Y W.Re-evaluation of fragmentation test based on the stress singularity of interface end[J].Composite Interfaces,2006,13(1):90-95.
[5] 戴瑛,嵇醒.界面端应力奇异性及界面应力分布规律研究[J].中国科学G,2007,37(4):535-543.Dai Ying,Ji Xing.Study on the stress singularity and stress distributions of interface end[J].Science in China:Series G,2007,37(4):535-543.
[6] 戴瑛,嵇醒,石川睛雄.轴对称圆柱界面裂纹的应力奇异性[J].上海力学,1994,15(3):29-39.Dai Ying,Ji Xing,Haruo Isikawa.The stress singularity of axisymmetric cylindrical interface crack[J].Shanghai Journal of Mechanics,1994,15(3):29-39.
[7] 刘一华,许金泉,丁皓江.轴对称圆柱界面端的应力奇异性[J].浙江大学学报:自然科学版,1998,32(3):307-314.Liu Yihua,Xu Jinquan,Ding Haojiang.Stress singularity in axiaymmetric cylindrical interface wedge[J].Journal of Zhejiang University:Natural Science,1998.32(3):307-314.
[8] 刘一华,许金泉,丁皓江.纤维端部的界面裂纹分析[J].力学学报,1999,3l(3):285-291.Liu Yihua,Xu Jinquan,Ding Haojfang.Analysis of interface cracks at a fiber end[J].Acta Mechanica Sinica,1999,31(3):285-291.
[9] 傅丽娟,姜国栋,戴瑛.横观各向同性轴对称界面端奇异性研究[J].力学季刊,2007,28(4):604-611.Fu Lijuan,Jiang Guodong,Dai Ying.Singularity study of transversely isotropic axisymmetric interface end[J].Chinese Quartery of Mechanics,2007,28(4):604-611.
[10] Wang X G.A boundary value method for the singular behavior of bimateria systems under inplane loading[J].International Journal of Solids and Structures,2005,42(20):5513-5535.
[11] Aluru N R,Li G.Finite cloud method:A true meshless technique based on a fixed reproducing kernel approximation[J].International Journal for Numerical Methods in Engineering,2001,50:2373-2410.
[12] Xu J Q,Liu Y H,Wang X G.Numerical methods for the determination of multiple stress singularities and related stress intensity coefficients[J].Engineering Fracture Mechanics,1999,63:755-790.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%