制冷剂的可燃性在一定程度上限制了其使用范围。通过基团贡献法分析了阻燃剂对可燃工质的抑制系数,结合燃烧学理论,对火焰传播速度和卤素工质的浓度变化关系进行了分析,得到了混合工质中阻燃剂的最小惰化浓度理论估算公式。对二元混合工质爆炸极限进行了实验研究,结果表明,可燃制冷剂在化学计量浓度下,当火焰传播速度准确时,理论估算值和实际实验数据基本吻合,理论估算结果对可燃制冷剂的安全使用有重要意义。
Flammability is a main obstacle for wide utilization of flammable refrigerants. The group contribution method is used to analyze the inhibition coefficient of nonflammable refrigerants in binary mixture refrigerants, and a novel equation of predicting the minimum inerting concentration of nonflammable refrigerant has been proposed by analyzing the variation of the flame propagation speed and the flammable refrigeration concentration. Furthermore, the explosion limits of the binary mixture refrigerants have been carried out. The results show that the theoretical and experimental value is high agreement under the relative flame propagation speed of pure refrigerant exactly at the stoichiometric concentration. The theoretical results have significance on the security application of the binary mixtures.
参考文献
[1] | Jianyong Chen;Jianlin Yu .Performance of a new refrigeration cycle using refrigerant mixture R32/R134a for residential air-conditioner applications[J].Energy and buildings,2008(11):2022-2027. |
[2] | Noto T.;Hamins A.;Tsang W.;Babushok V. .Inhibition effectiveness of halogenated compounds[J].Combustion and Flame,1998(1/2):147-160. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%