欢迎登录材料期刊网

材料期刊网

高级检索

研究TiH 2粉末的高能行星球磨规律,然后使用制备出的球磨粉末开展压制?真空烧结,评价烧结样品的显微组织特征。结果表明,TiH 2粉末的高能球磨可划分为3个基本阶段:球磨初期粉末粒度迅速细化;球磨中期粉末粒度逐步趋向最小极限尺寸,同时粉末粒径的均匀性和分布集中程度明显改善;在球磨的后期,粉末粒径又会发生粗化现象。因此,TiH2粉末的高能行星球磨存在一组最佳的工艺参数。高能球磨会改变TiH2粉末的脱氢特征温度,且粉体的D 50越小,特征温度下降幅度越大,与原料粉末相比,最大差值达83℃。对烧结样品的显微组织分析显示,通过由球磨TiH 2粉末所获得的烧结钛合金的晶粒度得到了显著地细化;当采用优化的工艺开展球磨TiH 2粉末制备时,通过压制和真空烧结可获得平均晶粒度在5μm以下的超细晶钛。

The planetary milling of TiH2 powders was systematically investigated, and then the sintered samples fabricated by pressing and sintering in vacuum of the milled powders was inspected to reveal the influence of high-energy milling on their microstructures. The results indicate that planetary milling of TiH 2 powders can be divided into three stages. At the initial milling, the size of the powders is rapidly reduced. At the middle milling stage the particle size gradually reaches the minimum, and the scope of size distribution also become more and narrower at the same time as milling goes on. And the size of the powders is raised at the final milling stage. It is also discovered that dehydrogenation temperatures of milled TiH 2 powders decrease in comparison with those of raw powders, and the finer the D 50 , the lower the temperatures. The maximum temperature difference becomes 83℃. Optical analysis shows that the grain size of the sintered titanium samples is obviously fined after milling raw powders. With the optimized milling treatment, the sintered titanium becomes ultrafine grain with size totally less than 5μm by pressing and sintering in vacuum.

参考文献

[1] A. Azushima;R. Kopp;A. Korhonen;D. Y. Yang;F. Micari;G. D. Lahoti;P. Groche;J. Yanagimoto;N. Tsuji;A. Rosochowski;A. Yanagida .Severe plastic deformation (SPD) processes for metals[J].CIRP Annals,2008(2):716-735.
[2] 张国宝;彭楚峰;吴鹤 .超细晶/纳米晶钛合金的研究与进展[J].材料导报,2007,21(11):9-11.
[3] Stolyarov VV.;Zhu YT.;Alexandrov IV.;Lowe TC.;Valiev RZ. .Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):43-50.
[4] STOLYAROV V V;ZHU Y T;LOWE T C;VALIEV R Z .Microstructure and properties of pure Ti processed by ECAP and cold extrusion[J].Materials Science and Engineering A,2001,303(1/2):82-89.
[5] 王幸运,赵西成,杨西荣,王成.ECAP制备超细晶钛的力学性能研究[J].热加工工艺,2009(10):10-11,15.
[6] KOLACHEV B A;NOSOV V K;LEBEDEV I A .Reversible hydrogen alloying of titanium alloys[J].Russia Journal of Non-Ferrous Metals,1985,3:104-107.
[7] 赵永庆,曹兴民,奚正平.热氢处理对两相钛合金及β钛合金加工态组织的影响[J].稀有金属材料与工程,2007(07):1145-1148.
[8] LIAO B;WANG T S;YONG K;XIAO F R LI Y Y .Effect of thermochemical processing with hydrogen on the formation and morphology of the orthorhombic phase in the Ti3Al-based super-α2 alloy[J].Materials Letters,1995,22(5/6):227-231.
[9] 戴坤良 .TiH<,2>粉体脱氢特性和压制与烧结行为研究[D].湖南大学,2009.
[10] MAURICE D R;COURTNEY T H .The physics of mechanical alloying:A first report[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1990,21(01):289-303.
[11] BHOSLE V .Dehydrogenation of TiH 2[J].Materials and Engineering A,2003,356:190-199.
[12] A. R. Kennedy;V. H. Lopez .The decomposition behavior of as-received and oxidized TiH_2 foaming-agent powder[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):258-263.
[13] C. Suryanarayana .Mechanical alloying and milling[J].Progress in materials science,2001(1/2):1-184.
[14] 杨君友;吴建生;曾振鹏 .机械合金化过程中粉末的变形及其能量转化[J].金属学报,1998,34(10):1061-1067.
[15] LIU C T;WU T I;WU J K .Formation of nanocrystalline structure of Ti-6Al-4V alloy by cyclic hydrogenation-dehydrogenation treatment[J].Materials Chemistry and Physics,2008,110(2/3):440-444.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%