采用动电位极化试验研究了7075-TiB2铝基复合材料的腐蚀行为.结果表明,该复合材料的腐蚀率与TiB2颗粒的比例成对应关系,而这主要与由原位TiB2颗粒引起的位错密度的增加有关.选择性点蚀具有晶粒间非对称的特点,主要归因于由TiB2颗粒与铝基体的热膨胀系数错配所致的局部位错密度不同.晶间腐蚀易于发生于大角度晶界,而特殊晶界和小角度晶界则表现出耐腐蚀性.晶内TiB2颗粒及其与铝基体的界面均无腐蚀发生.沿晶TiB2颗粒与晶界交汇的界面受晶间腐蚀的影响.
参考文献
[1] | Tjong SC.;Ma ZY. .Microstructural and mechanical characteristics of in situ metal matrix composites [Review][J].Materials Science & Engineering, R. Reports: A Review Journal,2000(3/4):49-113. |
[2] | ZHAO D G;LIU X F;LIU Y X et al.In-situ preparation of Al matrix composites reinforced by TiB2 articles and sub-micron ZrB2[J].Journal of Materials Science Letters,2005,40:4365-4368. |
[3] | SURESH S;SHENBAGA V M N .Aluminium-titanium diboride (Al-TiB2) metal matrix composites:Challenges and opportunities[J].Proc Eng,2012,38:89-97. |
[4] | MONTICELLI C;FRIGNANI A;BELLOSI A et al.The corrosion behaviour of titanium diboride in neutral chloride solution[J].Corrosion Science,2001,43:979-992. |
[5] | MUNROR G .Material properties of titanium diboride[J].Journal of Research of the National Institute of Standards and Technology,2000,105:709-720. |
[6] | M. Emamy;M. Mahta;J. Rasizadeh .Formation of TiB_2 particles during dissolution of TiAl_3 in Al-TiB_2 metal matrix composite using an in situ technique[J].Composites science and technology,2006(7/8):1063-1066. |
[7] | TEE K L;LU L;LAI M O .Wear performance of insitu Al-TiB2 composite[J].WEAR,2000,240:59-64. |
[8] | MANDAL A;CHAKRABORTY M;MURTY B S .Effect of TiB2 particles on sliding wear behaviour of Al-4Cu alloy[J].WEAR,2007,262:160-166. |
[9] | KUMAR S;CHAKRABORTY M;SUBRAMANYA S V et al.Tensile and wear behaviour of in situ Al-7Si/TiB2 particulate composites[J].WEAR,2008,265:134-142. |
[10] | S. Natarajan;R. Narayanasamy;S.P. Kumaresh Babu;G. Dinesh;B. Anil Kumar;K. Sivaprasad .Sliding wear behaviour of Al 6063/TiB_2 in situ composites at elevated temperatures[J].Materials & Design,2009(7):2521-2531. |
[11] | C. Mallikarjuna;S.M. Shashidhara;U.S. Mallik;K.I. Parashivamurthy .Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB_2 in-situ composites[J].Materials & design,2011(6):3554-3559. |
[12] | MICHAEL R H B;RAMABALAN S;DINAHARAN I et al.Effect of TiB2 content and temperature on sliding wear behavior of AA7075/TiB2 in situ aluminum cast composites[J].Arch Civ Mech Eng,2014,14:72-79. |
[13] | DAVIESPJ;KELLIE J L F;WOOD J V .[P].UK Patent No.2257985A,ASM,Paris,1992. |
[14] | SURESH S;MORTENSEN A;NEEDLEMAN A.Fundamentals of metal matrix composites[M].Boston:Butterworth Heinmann,1993 |
[15] | LU L;LAI M O;CHEN F L .Al-4% Cu composite reinforced with in-situ TiB2 particles[J].ACTA MATERIALIA,1997,45:4297-4309. |
[16] | AHMAD Z.Principles of corrosion engineering and corrosion control[M].Boston:Butterworth Heinmann,2006 |
[17] | Shimizu Y.;Matsushima I.;Nishimura T. .CORROSION RESISTANCE OF AL-BASED METAL MATRIX COMPOSITES[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(1/2):113-118. |
[18] | HIHARA L H;LATANISION R M .Galvanic corrosion of aluminium-matrix composites[J].CORROSION,1992,48:546-552. |
[19] | SALAZAR J M G D E;URENA A;MANZANEDO S et al.Corrosion behaviour of AA6061 and AA7005 reinforced with Al2 O3 particles in aerated 3.5 % chloride solutions:potentiodynamic measurements and microstructure evaluation[J].Corrosion Science,1998,41:529-545. |
[20] | AHMAD Z;PAULETTE P T;ALEEM B J A .Mechanism of localized corrosion of aluminum-silicon carbide composites in chloride containing environment[J].Journal of Materials Science,2000,35:2573-2579. |
[21] | S. K. Varma;Gustavo Vasquez .Corrosive Wear Behavior of 7075 Aluminum Alloy and Its Composite Containing Al_2O_3 Particles[J].Journal of Materials Engineering and Performance,2003(1):99-105. |
[22] | PARDO A;MERINO M C;MERINO S et al.Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)[J].Corrosion Science,2005,47:1750-1764. |
[23] | KARUNANITHI R;SUPRIYA B;GHOSH K S .Electrochemical behaviour of TiO2 reinforced Al 7075 composite[J].Mater Sei Eng B,2014,190:133-143. |
[24] | KATKAR V A;GUNASEKARAN G;RAO A G et al.Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater[J].Corrosion Science,2011,53:2700-2712. |
[25] | LEKATOU A;KARANTZALIS A E;EVANGELOU A et al.Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ):Microstructure,wear and corrosion behaviour[J].Materials and Design,2015,65:1121-1135. |
[26] | SAHOO P;KOCZAK M J .Analysis of in situ formation of titanium carbide in aluminum alloys[J].Mater Sei Eng A,1991,144:37-44. |
[27] | BARTELS C;RAABE D;GOTTSTEIN G et al.Investigation of the precipitation kinetics in an Al6061/TiB2 metal matrix composite[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,1997,237:12-23. |
[28] | M. S. Lee;P. Grieveson .Production of Al-Ti-B grain refining master alloys[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2003(6):769-772. |
[29] | ZHAO M C;LIU M;SONG G et al.Influence of the beta-phase morphology on the corrosion of the Mg alloy AZ91[J].Corros Sei,2008,50:1939-1953. |
[30] | M. Qian;D. Li;S.B. Liu;S.L. Gong .Corrosion performance of laser-remelted Al-Si coating on magnesium alloy AZ91D[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2010(10):3554-3560. |
[31] | EVERETT R K;ARSENAULT R J.Metal Matrix Composites:Mechanisms and Properties[M].Boston:Academ,1991:79. |
[32] | Kostka A.;Lelatko J.;Gigla M.;Morawiec H.;Janas A. .TEM study of the interface in ceramic-reinforced aluminum-based composites[J].Materials Chemistry and Physics,2003(2/3):323-325. |
[33] | Kim, C.-S.;Sohn, I.;Nezafati, M.;Ferguson, J.B.;Schultz, B.F.;Bajestani-Gohari, Z.;Rohatgi, P.K.;Cho, K. .Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs)[J].Journal of Materials Science,2013(12):4191-4204. |
[34] | WANG T M;CHEN Z N;ZHENG Y P et al.Development of TiB2 reinforced aluminum foundry alloy based in situ composites-Part Ⅱ:Enhancing the practical aluminum foundry alloys using the improved Al5%TiB2 master composite upon dilution[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2014,605:22-32. |
[35] | C. Luo;X. Zhou;G.E. Thompson;A.E. Hughes .Observations of intergranular corrosion in AA2024-T351: The influence of grain stored energy[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2012(Aug.):35-44. |
[36] | SAMELJUK A V;NEIKOV O D;KRAJNIKOV A V et al.Effect of rapid solidification on the microstructure and corrosion behavior of Al-Zn-Mg based material[J].Corrosion Science,2007,49:276-286. |
[37] | J.F. Li;Z.Q. Zheng;S.C. Li;W.J. Chen;W.D. Ren;X.S. Zhao .Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2007(6):2436-2449. |
[38] | N. Birbilis;M.K. Cavanaugh;R.G. Buchheit .Electrochemical behavior and localized corrosion associated with Al_7Cu_2Fe particles in aluminum alloy 7075-T651[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2006(12):4202-4215. |
[39] | Birbilis N;Buchheit RG .Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH[J].Journal of the Electrochemical Society,2008(3):C117-C126. |
[40] | DESHAIS G;NEWCOMB S B .Influence of microstructure on the formation of stress corrosion cracks in 7XXX series aluminium alloys[J].Materials Science Forum,2000,331(3):1635-1640. |
[41] | BIRBILIS N;BUCHHEIT R G .Electrochemical characteristics of intermetallic phases in aluminum alloys-An experimental survey and discussion[J].Journal of the Electrochemical Society,2005,152:140-151. |
[42] | Z. Szklarska-Smialowska .Pitting corrosion of aluminum[J].Corrosion Science,1999(9):1743-1767. |
[43] | BLANC C;MANKOWSKI G .Susceptibility to pitting corrosion of 6056 aluminium alloy[J].Corrosion Science,1997,39:949-959. |
[44] | EL-AMOUSH A M .Intergranularcorrosion behavior of the 7075-T6 aluminum alloy under different annealing conditions[J].Materials Chemistry and Physics,2011,126:607-613. |
[45] | KRONBERG M L;WILSON F H .Secondary recrystallization in copper[J].Trans AIME,1949,185:501-514. |
[46] | WATANABE T .An approach to grain-boundary design for strong and ductile polycrystals[J].RES MECHANICA,1984,11(1):47-84. |
[47] | Kokawa H .Weld decay-resistant austenitic stainless steel by grain boundary engineering[J].Journal of Materials Science,2005(4):927-932. |
[48] | PALUMBO G;AUST K T .Structure-dependence of intergranular corrosion in high purity nickel[J].Acta Metall,1990,38:2343-2352. |
[49] | LEHOCKEY E M;BRENNENSTUHL A M;THOMPSON L .On the relationship between grain boundary connectivity,coincident site lattice boundaries,and intergranular stress corrosion cracking[J].Corrosion Science,2004,46:2383-2404. |
[50] | M.A. Arafin;J.A. Szpunar .A New Understanding Of Intergranular Stress Corrosion Cracking Resistance Of Pipeline Steel Through Grain Boundary Character And Crystallographic Texture Studies[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2009(1):119-128. |
[51] | KIM S H;ERB U;AUST K T et al.Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum[J].Scripta Materialia,2001,44:835-839. |
[52] | VILLARS D;CALVERTL P.Pearson' s Handbook of Crystallographic Data for Intermetallic Phases (2Ed)[M].Ohio:Metals Park,1991:1645. |
[53] | MA Z Y;LI J H;LUO M et al.In-situ formed Al2O3 and TiB2 particulates mixture-reinforced aluminum composite[J].Scripta Metallurgica et Materialia,1994,31:635-639. |
[54] | LAKSHMI S;LU L;GUPTA M .In situ preparation of TiB2 reinforced Al based composites[J].Journal of Materials Processing Technology,1998,73:160-166. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%