欢迎登录材料期刊网

材料期刊网

高级检索

采用脉冲电沉积技术制备钴含量在2.4%~59.3%范围内的镍钴合金.利用XRD与TEM技术对纳米晶镍钴合金的组织结构进行表征.结果表明:所有成分的纳米晶镍钴合金均为面心立方结构的单相固溶体,平均晶粒尺寸为11~24 nm,且平均晶粒尺寸随钴含量的增加而减小,镍钴合金镀态下TEM组织中观察到的晶粒尺寸与XRD测量结果一致;纳米晶镍钴合金抗拉强度为1 300~1 650 MPa,断裂伸长率为10.5%~14.5%,镍钴合金的抗拉强度与断裂伸长率均随钴含量的增加而提高;随着钴含量的不断增加,镍钴合金在单向拉伸过程中的应力诱发晶粒长大被逐渐抑制,提高加工硬化率,塑性失稳被延迟,从而提高塑性.

Ni-Co alloys with Co content varying from 2.4% to 59.3% were prepared by pulse electrodeposition nanocrystalline. The microstructures of the nanocrystalline Ni-Co alloys were characterized by XRD and TEM. The analysis of XRD indicates that nanocrystalline Ni-Co alloys are all face-centered cubic structure, single-phase solid solution with an average grain size in the range of 11-24 nm, and the average grain size decreases with increasing Co content. The grain size observed in the TEM structures of as-deposited Ni-Co alloys is consistent with that measured by XRD. For nanocrystalline Ni-Co alloys, the ultimate tension strength is in the range of 1 300-1 650 MPa and the elongation to failure is in the range of 10.5%-14.5%. Both the ultimate tension strength and the elongation to failure increase with increasing Co content. With increasing Co content, the grain growth in the process of tension deformation is gradually suppressed leading to improved work hardening rate and delayed plasticity instability, which aids to obtain enhanced ductility.

参考文献

[1] WANG N;WANG Z;AUST K T;ERB U .Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1997,237(02):150-158.
[2] F. Dalla Torre;H. Van Swygenhoven;M. Victoria .Nanocrystalline electrodeposited Ni: microstructure and tensile properties[J].Acta materialia,2002(15):3957-3970.
[3] Legros M.;Rittner MN.;Weertman JR.;Hemker KJ.;Elliott BR. .Microsample tensile testing of nanocrystalline metals[J].Philosophical Magazine.A.Physics of condensed matter, defects and mechanical properties,2000(4):1017-1026.
[4] Y.M. Wang;S S. Cheng;Q.M. Wei .Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni[J].Scripta materialia,2004(11):1023-1028.
[5] Tai Hong Yim;Seung Chae Yoon;Hyoung Seop Kim .Tensile properties of electrodeposited nanocrystalline nickel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):836-840.
[6] Y.F. SHEN;L. LU;Q.H. LU .Tensile properties of copper with nano-scale twins[J].Scripta materialia,2005(10):989-994.
[7] Youssef KM;Scattergood RO;Murty KL;Horton JA;Koch CC .Ultrahigh strength and high ductility of bulk nanocrystalline copper[J].Applied physics letters,2005(9):1904-1-1904-3-0.
[8] Wang Y;Chen M;Zhou F;Ma E .High tensile ductility in a nanostructured metal.[J].Nature,2002(6910):912-915.
[9] Y. M. Wang;E. Ma .Strain hardening, strain rate sensitivity, and ductility of nanostructured metals[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):46-52.
[10] H. Wei;G.D. Hibbard;G. Palumbo .The effect of gauge volume on the tensile properties of nanocrystalline electrodeposits[J].Scripta materialia,2007(11):996-999.
[11] Hongqi Li;Fereshteh Ebrahimi .Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals[J].Applied physics letters,2004(21):4307-4309.
[12] Changdong Gu;Jianshe Lian;Qing Jiang;Zhonghao Jiang .Ductile-brittle-ductile transition in an electrodeposited 13 nanometer grain sized Ni-8.6 wt.% Co alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):75-81.
[13] D.H. Jeong;U. Erb;K.T. Aust .The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni-P coatings[J].Scripta materialia,2003(8):1067-1072.
[14] Andrew J. Detor;Christopher A. Schuh .Tailoring and patterning the grain size of nanocrystalline alloys[J].Acta materialia,2007(26):371-379.
[15] Li HQ.;Ebrahimi F. .Synthesis and characterization of electrodeposited nanocrystalline nickel-iron alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):93-101.
[16] K. S. Kumar;S. Suresh;M. F. Chisholm;J. A. Horton;P. Wang .Deformation of electrodeposited nanocrystalline nickel[J].Acta materialia,2003(2):387-405.
[17] Schiotz J;Jacobsen KW .A maximum in the strength of nanocrystalline copper[J].Science,2003(5638):1357-1359.
[18] D. Farkas;A. Fraseth;H. Van Swygenhoven .Grain boundary migration during room temperature deformation of nano- crystalline Ni[J].Scripta materialia,2006(8):695-698.
[19] Farkas, D;Mohanty, S;Monk, J .Strain-driven grain boundary motion in nanocrystalline materials[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):33-40.
[20] SHAN Z W;STACH E A;WIEZOREK J M K;KNAPP J A FOLLSTAEDT D M MAO S X .Grain boundary-mediated plasticity in nanocrystalline nickel[J].Science,2004,305(5684):654-657.
[21] BRANDSTETTER S;ZHANG K;ESCUADRO A;WEERTMAN J R van SWYGENHOVEN H .Grain coarsening during compression of bulk nanocrystalline nickel and copper[J].Scripta Materialia,2008,58(01):61-64.
[22] X. Z. Liao;A. R. Kilmametov;R. Z. Valiev;Hongsheng Gao;Xiaodong Li;A. K. Mukherjee;J. F. Bingert;Y. T. Zhu .High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni[J].Applied physics letters,2006(2):021909-1-021909-3-0.
[23] Zhang K;Weertman JR;Eastman JA .The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper[J].Applied physics letters,2004(22):5197-5199.
[24] FROSETH A D;DERLET P M;van SWYGENHOVEN H .Twinning in nanocrystalline fcc metals[J].Advanced Materials and Engineering,2005,7(1/2):16-20.
[25] Jang, S;Purohit, Y;Irving, D;Padgett, C;Brenner, D;Scattergood, RO .Molecular dynamics simulations of deformation in nanocrystalline Al-Pb alloys[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):53-57.
[26] W.A. Soer;J.Th.M. De Hosson;A.M. Minor .Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al-Me thin films[J].Acta materialia,2004(20):5783-5790.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%