用差示扫描量热法(DSC)研究了含氢20-240μg/g的N18、Zry-4和M5三种锆合金加热时氢化物完全溶解时的固溶度(TSSD)和冷却时氢化物开始析出时的固溶度(TSSP)并使用TSSD或TSSP数据拟合出最优方程.结果表明,这些合金的TSSD或TSSP差别都很小,TSSD与TSSP之间都存在显著的滞后,是氢化物与基体间的体积错配应变所导致.根据冷却时DSC放热峰的宽度,计算出氢化物从过饱和固溶体中析出的平均速率,并拟合出最优方程.氢化物析出的活化能与氢在锆合金中的扩散激活能近似,表明氢化物的析出受到氢扩散的控制.
The terminal solid solubilities for dissolution of hydrides (TSSD) during heating-up and for precipitation of hydrides (TSSP) during cooling-down for N18, Zry-4 and M5 with hydrogen concentrations of 20-240μg/g were measured by differential scanning calorimetry (Dsc).The results show that the difference in TSSD or TSSP is very small for these alloys, and best-fit equations were derived.A significant hysteresis between the solvi of TSSD and TSSP occurred, resulting from the hydride-matrix volumetric misfit strain. Based on the widths of the DSC peaks obtained during cooling-down, the average precipitation rates of zirconium hydrides from super-saturated state were evaluated by best-fit equations.The activation energies of precipitation rates were approximately equivalent to the reported values of hydrogen diffusion in Zircaloys, indicating a hydrogen diffusion mechanism.
参考文献
[1] | D.O.Northwood,O.Kosasih,Hydrides and delayed.hydro-gen cracking in zirconium and its alloys,Int.Met.Rev.,28,92-121(1983) |
[2] | B.Cox,Environmentally-induced cracking of zirconium alloys-A review,J.Nucl.Mater.,170,1-23 (1990) |
[3] | S.Q.Shi,G.K.Shek,M.P.Puls,Hydrogen concentration limit and critical temperatures for delayed hydride crack-ing in zirconium alloys,J.Nucl.Mater.,218,189-211(1995) |
[4] | M.P.Puls,Effects of crack tip stress state and hydride-matrix interaction stresses on delayed hydride cracking,Metall.Trans.A,21,2905-2917 (1990) |
[5] | R.N.Singh,N.Kumar,R.Kishore,Delayed hydride crack-ing in Zr-2.5Nb pressure tube material,J.Nucl.Mater.,304,189-203(2002) |
[6] | D.Khatamian,Z.L.Pan,M.P.Puls,C.D.Cann,Hydrogen solubility limits in Excel,an experimental zirconium-based alloys,J.Alloys Compd.,231,488-493(1995) |
[7] | W.H.Erikson,D.Hardie,The influence of alloying elements on the terminal solubility of hydrogen in a-zirconium,J.Nucl.Mater.,13,254-262(1964) |
[8] | A.Sawatzky,B.J.S.Wilkins,Hydrogen solubility in zirco-nium alloys determined by thermal diffusion,J.Nucl.Mater.,22,304-310(1967) |
[9] | D.Khatamian,V.C.Ling,Hydrogen solubility limits in á-and a-zirconium,J.Alloys Compd.,253-254,162-166(1997) |
[10] | Y.Mishima,S.Ishino,S.Nakajtma,A resistometric study of the solution and precipitation of hydrides in unalloyed zirconium,J.Nucl.Mater.,27,335-344(1968) |
[11] | D.Setoyama,J.Matsunaga,M.Ito,Influence of additive el-ements on the terminal solid solubility of hydrogen for zirconium alloy,J.Nucl.Mater.,344,291-294(2005) |
[12] | D.Khatamian,Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry,J.Alloys Comp.,293-295,893-899(1999) |
[13] | Z.L.Pan,I.G.Ritchie,M.P.Puls,The terminal solid solu-bility of hydrogen and deuterium in Zr-2.5Nb alloys,J.Nucl.Mater.,228,227-237(1996) |
[14] | G.F.Slattery,The terminal solubility of hydrogen in zir-conium alloys between 30 and 400 C,J.Inst.Met.,95,43-47(1967) |
[15] | A.McMinn,E.C.Darby,J.S.Schofield,The terminal solid solubility of hydrogen in zirconium alloys,in:G.P.Sabol,G.D.Moan (Eds.),Proceedings of the 12th International Symposium on Zirconium in the Nuclear Industry,ASTM STP 1354,2000,pp.173-195 |
[16] | J.J.Kearns,Terminal solubility and partitioning of hy-drogen in the alpha phase of zirconium,Zircaloy-2 and Zircaloy-4,J.Nucl.Mater.,22,292-230(1967) |
[17] | R.N.Singh,S.Mukherjeea,A.Guptab,S.Banerjeea,Termi-nal solid solubility of hydrogen in Zr-alloy pressure tube materials,J.Alloys Comp.,389,102-112(2005) |
[18] | K.Une,S.Ishimoto,Dissolution and precipitation behav-ior of hydrides in Zircaloy-2 and high Fe Zircaloy,J.Nucl.Mater.,322,66-72(2003) |
[19] | D.Khatamian,Effect of a-Zr decomposition on the solu-bility limits for H in Zr-2.5Nb,J.Alloys Compd.,356-357,22-26(2003) |
[20] | J.H.Root,R.W.L.Fong,Neutron diffraction study of the precipitation and dissolution of hydrides in Zr-2.5Nb pres-sure tube material,J.Nucl.Mater.,232,75-85 (1996) |
[21] | C.D.Cann,A.Atrens,A metallographic study of the ter-minal solubility of hydrogen in zirconium at low hydrogen concentrations,J.Nucl.Mater.,88,42-50(1980) |
[22] | P.Vizcaino,A.D.Banchik,J.P.Abriata,Solubility of hydro-gen in Zircaloy-4:irradiation induced increase and ther-mal recovery,J.Nucl.Mater.,304,96-106(2002) |
[23] | K.Une,S.Ishimoto,Heat capacity of hydrogenated Zircaloy-2 and high Fe Zircaloy,J.Nucl.Mater.,323,101-107 (2003) |
[24] | M.P.Puls,Elastic and plastic accommodation effects on metal-hydride solubility,Acta Matall.,32,1259-1269(1984) |
[25] | M.P.Puls,On the consequences of hydrogen supersatura-tion effects in Zr alloys to hydrogen ingress and delayed hydride cracking,J.Nucl.Mater.,165,128-141(1989) |
[26] | J.J Kearns,Diffusion coefficient of hydrogen in alpha zir-conium,Zircaloy-2 and Zircaloy-4,J.Nucl.Mater.,43,330-338(1972) |
[27] | A.Sawatzky,The diffusion and solubility of hydrogen in the alpha phase of zircaloy-2,J.Nucl.Mater.,2,62-68(1960) |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%