钢铁, 2014, 42(4): 33-37.
高炉冲渣水余热驱动两级热电发电装置FTT分析
熊兵 1, , 陈林根 2, , 孟凡凯 3, , 孙丰瑞 铝熔炼炉的主要类型和冶炼工艺,分析了使用条件,讨论了炉衬耐火材料的使用要求,重点阐述了铝熔炼炉用耐火材料的研究开发和应用情况.","authors":[{"authorName":"王战民","id":"8eab0f61-b2f5-4451-8a41-5826e1d2aa5e","originalAuthorName":"王战民"},{"authorName":"曹喜营","id":"0cfe4325-d3f2-4681-9078-1e6c572b9ab6","originalAuthorName":"曹喜营"},{"authorName":"张三华","id":"5c9ca518-c9c4-4c2e-a4f6-f82a89657d69","originalAuthorName":"张三华"},{"authorName":"石会营","id":"80a11872-8ed7-4196-a299-b4679f463f64","originalAuthorName":"石会营"},{"authorName":"李少飞","id":"c41b75ca-c727-4b6a-86c8-9cb407ac0450","originalAuthorName":"李少飞"},{"authorName":"胡书禾","id":"60e22c2c-6498-4f14-9c60-9fd587f56501","originalAuthorName":"胡书禾"}],"doi":"10.3969/j.issn.1001-1935.2014.01.001","fpage":"1","id":"2b45c7a3-d958-4ac6-951a-6767e0dd1e08","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"22405882-f4d8-4b32-b5ad-1a3548ca1d71","keyword":"铝熔炼炉","originalKeyword":"铝熔炼炉"},{"id":"3f2d4152-f6bd-4ae2-a5bd-42e19dbfe439","keyword":"耐火材料","originalKeyword":"耐火材料"},{"id":"5c81d60e-00fe-4540-ab89-8073afc6f2fd","keyword":"发展","originalKeyword":"发展"},{"id":"3c536677-62eb-4b74-898d-3c3d30d3b4b7","keyword":"研究","originalKeyword":"研究"},{"id":"efb654f9-b5ba-4c2e-9f0c-a5361552aa3b","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"nhcl201401001","title":"铝熔炼炉用耐火材料的现状和发展","volume":"48","year":"2014"},{"abstractinfo":"采用坩埚法和浸泡法研究了不同Al2O3含量(质量分数分别为80%~85%、65%~70%、40%~45%、25%~30%)及不同温度(分别为110、800、1 100和1 400 ℃)热处理后的Al2O3-SiO2系浇注料的抗铝液侵蚀性,借助电镜和能谱分析研究了被850 ℃铝液侵蚀后试样的显微结构.结果表明:(1)随着Al2O3含量的增加,Al2O3-SiO2系浇注料的抗铝液侵蚀性增强;(2)在1 100 ℃热处理后,浇注料的抗铝液侵蚀性最差;(3)铝液渗入浇注料内部后,铝液中的Al和Mg与浇注料中的石英和莫来石相发生反应,将SiO2还原成Si,Al和Mg则氧化成Al2O3和MgO,MgO进而与Al2O3反应生成尖晶石,破坏试样的结构;(4)对于Al2O3含量较高的Al2O3-SiO2浇注料,尖晶石富集层较致密,可阻止铝液继续向浇注料内部渗透.","authors":[{"authorName":"张三华","id":"35fb8566-00b2-47e9-b44b-6245522a228d","originalAuthorName":"张三华"},{"authorName":"王战民","id":"4d8d24fe-cba5-4612-9aa7-44d17dd9946d","originalAuthorName":"王战民"},{"authorName":"胡书禾","id":"46363b2f-48eb-495c-9f0a-c206f7756417","originalAuthorName":"胡书禾"},{"authorName":"李少飞","id":"5bfa9247-c074-44e7-a721-1b551ccbcf9e","originalAuthorName":"李少飞"},{"authorName":"石会营","id":"dd59f255-0e58-4b2b-a73b-70b781273bf2","originalAuthorName":"石会营"},{"authorName":"曹喜营","id":"2100cbef-7e10-40e3-a2d5-fa303f2e3520","originalAuthorName":"曹喜营"},{"authorName":"喻枫","id":"e11c5dd2-225f-4c76-b807-69d0fa796806","originalAuthorName":"喻枫"}],"doi":"10.3969/j.issn.1001-1935.2010.01.001","fpage":"1","id":"c784bce4-607c-4fab-8612-6e7f30d238c7","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"c0eb7f2b-aeea-4b6a-8417-2da5cfe60a27","keyword":"铝熔炼炉","originalKeyword":"铝熔炼炉"},{"id":"575d069a-af36-42d3-bcd0-33eec0b1d637","keyword":"Al2O3-SiO2系浇注料","originalKeyword":"Al2O3-SiO2系浇注料"},{"id":"cd6207cb-8a42-483a-9632-90de6f9a3319","keyword":"抗铝液侵蚀性","originalKeyword":"抗铝液侵蚀性"},{"id":"c9dbdf46-3123-4002-8bd1-6870acb8c744","keyword":"Al2O3含量","originalKeyword":"Al2O3含量"},{"id":"dafe4694-6613-4522-b1df-382a0bf6d50c","keyword":"热处理温度","originalKeyword":"热处理温度"}],"language":"zh","publisherId":"nhcl201001001","title":"Al2O3含量及热处理温度对Al2O3-SiO2系浇注料抗铝液侵蚀性的影响","volume":"44","year":"2010"},{"abstractinfo":"双层热风熔炼炉能处理各种复杂的含金银多金属矿料,可综合回收矿料中的铜、铅、金、银等.既可做到综合利用矿产资源,又能减少环境污染.","authors":[{"authorName":"郭继中","id":"46eb2507-a439-419d-8692-af3335714418","originalAuthorName":"郭继中"},{"authorName":"谭宪章","id":"d14216cd-5225-4b47-8fd7-f5e9b974e7ea","originalAuthorName":"谭宪章"}],"doi":"10.3969/j.issn.1001-1277.2002.01.008","fpage":"33","id":"fe20acf3-96fa-4450-95a1-0b79759add6f","issue":"1","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"f3d7f824-8ac0-4093-9761-dc5f4aac332e","keyword":"金","originalKeyword":"金"},{"id":"4dac65de-a980-4e5c-a093-2a945f58af84","keyword":"银","originalKeyword":"银"},{"id":"9063be55-8757-42f3-9be3-5b39aef801c2","keyword":"伴生金属","originalKeyword":"伴生金属"},{"id":"90c513b3-2c5e-43fc-b3d6-cc4e1a903bbf","keyword":"双层热风熔炼炉","originalKeyword":"双层热风熔炼炉"},{"id":"1703c4ef-2e28-4cae-b9d4-f15770065b6b","keyword":"综合回收","originalKeyword":"综合回收"}],"language":"zh","publisherId":"huangj200201008","title":"双层热风熔炼炉及其应用","volume":"23","year":"2002"},{"abstractinfo":"在一次性充入含0.01%HFC134a(体积分数)的氮气的密封熔炼炉中,研究了表面搅拌、熔炼温度和熔炼炉密封质量对AZ91D镁合金保护效果的影响以及气氛对熔炼坩埚内壁的腐蚀,并对表面膜形貌、厚度和成分进行了研究.研究结果表明,HFC134a适合充当镁合金在密封熔炼炉中保护气体,氮气是一种好的载气.无表面搅拌时,AZ91D镁合金的最高保护温度是865℃;有表面搅拌时,最高保护温度是800℃.允许熔炼炉内压升率超过10 kPa/min.所有保护膜呈致密胞团状结构,膜厚度在1~2μm之间,且比较均匀.而AZ91D镁合金不被保护时,表面膜呈絮状,膜厚度在2~5 μm之间变化,厚度很不均匀.随熔炼温度升高,表面膜中C含量逐渐减少到零,表面膜中氧含量逐渐升高.炉内气氛对熔炼炉内壁无可观察到的腐蚀.","authors":[{"authorName":"聂书红","id":"a910a336-5956-4fe5-b1d9-89521a6ae152","originalAuthorName":"聂书红"},{"authorName":"熊守美","id":"ae756d89-2466-478b-8f54-d73f318e180c","originalAuthorName":"熊守美"}],"doi":"","fpage":"436","id":"9859cf38-671c-4047-ac1a-96d9c6e3602e","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"1efd0828-c5bf-49cd-ab4c-0f5a71eeee42","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"bc735869-2a71-49d3-82fc-3c54f6494205","keyword":"密封炉","originalKeyword":"密封炉"},{"id":"51ad9c84-59ed-4932-8177-39e6612392f6","keyword":"保护气体","originalKeyword":"保护气体"},{"id":"ec8594ec-44ea-4b41-9b5f-40813816097c","keyword":"表面膜","originalKeyword":"表面膜"}],"language":"zh","publisherId":"zgysjsxb200603009","title":"在密封熔炼炉含0.01%HFC134a的氮气中熔炼AZ91D镁合金","volume":"16","year":"2006"},{"abstractinfo":"在一次性充入0.01%(体积分数)HFCl34a/N2/空气保护气氛的密封熔炼炉中,研究了气氛中空气含量、表面搅拌和保温时间对AZ91D镁合金在760℃下保护效果的影响和气氛对熔炼坩埚内壁的腐蚀情况,并对表面膜形貌、厚度和成分进行了研究.研究结果表明,气氛中空气分压为8.0 kPa时,经过10 h保温,AZ91D熔体依然被保护,表面搅拌不影响保护效果.随着气氛中空气分压从2.3 kPa增加到80.0 kPa,AZ91D表面平整度降低,当空气分压为80.0 kPa时,表面膜分为两层,最表层呈网状;表面膜中氧的原子分数从11.98%升高到26.62%,C的原子分数从0.98%降低到0,表面膜厚度从1.1μm增加到1.7μm,熔炼坩埚内壁从没有红锈腐蚀到大片氧化铁皮脱落.因此在密封熔炼炉含0.01%(体积分数)HFC134a气氛中熔炼AZ91D,气氛中空气含量越少,金属镁的氧化量越少.","authors":[{"authorName":"聂书红","id":"57248117-2a79-4e71-bb9a-505263648f18","originalAuthorName":"聂书红"},{"authorName":"熊守美","id":"8b1949a1-da35-4c69-9dbb-ca7c401f94f5","originalAuthorName":"熊守美"}],"doi":"10.3969/j.issn.1001-1560.2007.03.005","fpage":"14","id":"7e7262b6-6f61-474d-8f0e-2f6d3758ac2d","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"3a6cf03f-e95d-4484-90b8-7b1d44ad6126","keyword":"AZ91D镁合金","originalKeyword":"AZ91D镁合金"},{"id":"1cb8a78d-2190-4aee-ae2e-aa3f7fccc9b7","keyword":"密封炉","originalKeyword":"密封炉"},{"id":"4f5480a6-c882-4a95-86e1-889447ac0a29","keyword":"保护气氛","originalKeyword":"保护气氛"},{"id":"f81e8d31-855d-46bd-965c-0a0baa4bf041","keyword":"空气分压","originalKeyword":"空气分压"}],"language":"zh","publisherId":"clbh200703005","title":"密封熔炼炉中空气分压对镁合金保护效果的影响","volume":"40","year":"2007"},{"abstractinfo":"对澳斯麦特铜熔炼炉渣线部位使用后的铝铬砖进行了XRD、SEM和EDS分析结果表明:在使用过程中,铝铬砖中的Al2O3、Cr2O3与渗入熔渣中的FeO反应生成高熔点的铁铝尖晶石和铁铬尖晶石,从而阻止炉渣对耐火材料的进一步侵蚀,延长炉衬的使用寿命;炉渣中的SiO2和CaO主要与砖中的Al2O3反应生成低熔点的硅酸盐相Ca(Al2Si2O8).","authors":[{"authorName":"章道运","id":"b909c711-d10c-413d-a89f-310967b12f58","originalAuthorName":"章道运"},{"authorName":"樊新丽","id":"e2a4822a-d9c8-4df1-8900-8d957084da04","originalAuthorName":"樊新丽"}],"doi":"10.3969/j.issn.1001-1935.2012.03.010","fpage":"200","id":"4cc47760-eb04-4ebd-96b7-16dd2055d4b9","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"586330e2-6c18-464c-9733-90d79de67266","keyword":"澳斯麦特炉","originalKeyword":"澳斯麦特炉"},{"id":"1d374bfc-0e99-4294-81de-f651afa93f7f","keyword":"铝铬砖","originalKeyword":"铝铬砖"},{"id":"95d113d4-e9cc-4198-801e-3cc88bd23759","keyword":"显微结构","originalKeyword":"显微结构"}],"language":"zh","publisherId":"nhcl201203010","title":"澳斯麦特铜熔炼炉渣线用后铝铬残砖的分析","volume":"46","year":"2012"},{"abstractinfo":"以某公司的富氧底吹熔池熔炼炉为原型,运用数值模拟的方法对炉内氧气-铜锍两相流动进行三维瞬态模拟,研究炉内气泡主要参数、气含率分布规律、氧枪出口附近压力变化以及液面波动情况.并借助于高速摄像仪设备,对水模型实验中气泡形成、合并、变形及破碎过程进行研究,所得结果与模拟结果进行比较.结果表明:所建立的数学模型是合理的.氧气铜锍两相流动模拟结果表明,炉内气泡形成时间为0.12,~0.25 s,生成频率为4~5 Hz,其短轴大小集中在3.5d~6.5d(d为氧枪直径尺寸):气泡停留时间为0.2~0.4 s,其在熔池内的平均上浮速度约为4 m/s;7°和22°氧枪出口气泡后座现象出现的平均频率分别为5Hz和7Hz,作用时间为0.06 s;高效反应区存在于熔池上部区域;气相搅动液相所形成的表面重力波在沉淀区传播的过程中,波幅衰减很快,当波传播到出渣口附近时,液面趋于静止.","authors":[{"authorName":"张振扬","id":"1582cf2d-242e-455d-b922-a53fefc59bc4","originalAuthorName":"张振扬"},{"authorName":"陈卓","id":"e2a97a60-42b9-4eeb-bdc0-c1a09a8e5b7f","originalAuthorName":"陈卓"},{"authorName":"闫红杰","id":"d91cab4a-a623-40d6-b0d9-ba94261935eb","originalAuthorName":"闫红杰"},{"authorName":"刘方侃","id":"c2580b21-360e-4a7a-bfd2-ce91ae77480a","originalAuthorName":"刘方侃"},{"authorName":"刘柳","id":"859ff496-fca3-4f27-b41f-e18f01bb0bbb","originalAuthorName":"刘柳"},{"authorName":"崔志祥","id":"c43b13c6-25d4-4673-a83f-39204e9d5f7a","originalAuthorName":"崔志祥"},{"authorName":"申殿邦","id":"cecb29db-b68a-4277-a059-ca58468dc730","originalAuthorName":"申殿邦"}],"doi":"","fpage":"1826","id":"3a12793c-677b-4bd2-8d82-5637559e47d4","issue":"6","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"e68b8798-fbe4-4fdd-a04c-93f08136126e","keyword":"两相流","originalKeyword":"两相流"},{"id":"a6b785fb-ed26-4b60-b89e-378e533f5836","keyword":"气泡","originalKeyword":"气泡"},{"id":"583339f1-9afc-46d4-870c-e99040b65839","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"376b1b81-a244-4e81-9e9b-036d1dcee89d","keyword":"底吹炉","originalKeyword":"底吹炉"}],"language":"zh","publisherId":"zgysjsxb201206038","title":"富氧底吹熔炼炉内气液两相流动的数值模拟","volume":"22","year":"2012"},{"abstractinfo":"为了得到COREX熔炼造气炉内初渣、中间渣以及终渣的化学成分,通过试验研究熔炼造气炉内的成渣反应和成渣过程,对炉渣黏度进行检测,得到炉渣成分及其性质.在分析试验数据基础上,得出影响炉渣性质的主要因素是碱度,随着终渣w(FeO)的降低,碱度先变高再变低,炉渣的熔化性温度也由1 268℃升高到1 442℃,再由1 442℃降低到1 332℃.","authors":[{"authorName":"张波","id":"29ca6949-9e5e-4ec0-8828-02d95ce508d7","originalAuthorName":"张波"},{"authorName":"方觉","id":"23a6265a-844a-4b50-b92c-486ec977d468","originalAuthorName":"方觉"},{"authorName":"李金龙","id":"90eb33b4-1d8c-4dab-bf29-d43e3a578d36","originalAuthorName":"李金龙"}],"doi":"","fpage":"5","id":"65ca7c7a-76a8-40e5-a2b7-b6733b021cea","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"565bc9d9-3301-4f6f-87ba-790d2baad44f","keyword":"COREX熔炼造气炉","originalKeyword":"COREX熔炼造气炉"},{"id":"6b17807a-f1da-43e2-8448-7555fad71cc5","keyword":"炉渣成分与性质","originalKeyword":"炉渣成分与性质"},{"id":"4b93c8c5-cb81-430e-aca7-85a9e95fb5be","keyword":"碱度","originalKeyword":"碱度"},{"id":"4bf6115d-1a18-4d0a-b960-fe345195c7db","keyword":"熔化性温度","originalKeyword":"熔化性温度"}],"language":"zh","publisherId":"gtyj201301002","title":"COREX熔炼炉内炉渣成分与性质的研究","volume":"41","year":"2013"},{"abstractinfo":"在密封的钢熔炼炉中研究了不同温度下0.3%SF6/N2气氛中AZ91D镁合金的表面膜成分和形貌,以及表面膜成分与保护效果之间的关系.结果表明:当熔炼温度超过780℃,表面膜中开始检测到铁,随着熔炼温度的增加,表面膜中铁含量逐渐增加.780,810,820 ℃时,膜中铁含量分别为1.65at%,35.14at%和46at%当熔炼温度为810℃,表面膜中开始出现孔洞;当熔炼温度超过824℃,表面膜宏观很不平整,AZ91D镁合金显著蒸发.可能原因是780℃以上的熔炼温度下,FeF3具有很高的蒸气压,FeF3在钢熔炼炉壁上生成、升华,再到温度更低的小坩埚中心区和Mg蒸汽反应,生成MgF2和Fe.","authors":[{"authorName":"聂书红","id":"2e099385-4ab7-4b72-baed-7c812090356d","originalAuthorName":"聂书红"},{"authorName":"熊守美","id":"72247d1f-1f31-47a9-b4b0-bda8fcb88ca3","originalAuthorName":"熊守美"},{"authorName":"刘争","id":"7365021f-36c2-454d-bf45-9336bd71ccf1","originalAuthorName":"刘争"}],"doi":"","fpage":"21","id":"905f641a-a61c-4b44-b50c-ba3b65d0a1a7","issue":"z3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"05ca7651-cec5-439a-b649-f818a60ead9e","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"b5345393-7220-44f7-aec5-de78dc870f08","keyword":"表面膜","originalKeyword":"表面膜"},{"id":"a4211e6e-8d30-4d84-a66d-55dfb1fd4560","keyword":"钢坩埚","originalKeyword":"钢坩埚"},{"id":"cccd5ae1-1fd3-4d79-b9ec-a70439d42688","keyword":"六氟化硫","originalKeyword":"六氟化硫"},{"id":"4909db3d-3aea-4d2c-971e-ec8d1f1e789d","keyword":"氮气","originalKeyword":"氮气"}],"language":"zh","publisherId":"xyjsclygc2007z3006","title":"钢熔炼炉对N2/SF6气氛中镁合金表面膜的影响","volume":"36","year":"2007"},{"abstractinfo":"冷床炉熔炼是先进熔炼技术,它是生产钛、超合金和难熔金属优质铸锭的重要手段.本文对冷床炉熔炼技术的发展背景、冷床炉的结构和工作原理、冷床炉熔炼的特点与优势、冷床炉熔炼的关键问题以及冷床炉的应用进行了综合评述.","authors":[{"authorName":"邓炬","id":"c47a76a9-fdc9-4dc1-b213-4c06846b675f","originalAuthorName":"邓炬"},{"authorName":"王克光","id":"2099aa70-b20c-4b40-94bb-0c5eff073cc4","originalAuthorName":"王克光"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.092","fpage":"315","id":"42406127-2399-4ca6-ba3a-6852471f3e2a","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"59626248-6592-41d8-87a0-d45a3941ea6a","keyword":"冷床炉熔炼","originalKeyword":"冷床炉熔炼"},{"id":"706a18e0-1c9c-4b4f-805c-de8e4099a2e9","keyword":"钛","originalKeyword":"钛"},{"id":"320b16b4-83d4-41ae-b0a5-83a1a44605ef","keyword":"超合金","originalKeyword":"超合金"},{"id":"2c5d3ca6-aa0e-4b42-bc09-78cb91248371","keyword":"难熔金属","originalKeyword":"难熔金属"}],"language":"zh","publisherId":"jsxb2002z1092","title":"冷床炉熔炼技术","volume":"38","year":"2002"}],"totalpage":1422,"totalrecord":14211}